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Représentations linéaires

«Plus une méthode est nouvelle et féconde,
plus elle étend le champ de I'inconnu.»

J. Bertrand, D’Alembert, cité dans [2]

Hegel parlait de «l’apparence bariolée du sensible». Ici, c’est plutot «l’apparence
bariolée» de l'intelligible mathématique que nous voudrions rendre sensible. En espé-
rant faire entrevoir que le développement des mathématiques ne repose pas sur le seul
mouvement d’élévation conceptuelle, mais qu’au contraire la conquéte de l’intelligible
mathématique s’appuie sur une dynamique de va-et-vient entre avancées conceptuelles et
retombées applicatives.

«Retombéex» : n’y voyons surtout pas une chute d’Icare du ciel des Idées, mais ce mou-
vement essentiel par lequel les nouveaux concepts essaiment, se concrétisent, et fécondent
d’autres territoires mathématiques.

Ce second exposé sur le theme général des symétries s’ouvre sur un long préambule
présentant les idées fondamentales de linéarisation et de représentation en mathématique.
Nous esquisserons ensuite la théorie des représentations linéaires des groupes, initiée par
Frobenius a la fin du XIXeéme siecle (dans le cas des groupes finis). Un acteur majeur fut
H. Weyl qui, en liaison avec ses travaux sur les fondements de la mécanique quantique,
fit la jonction inattendue avec I'analyse de Fourier et créa l’analyse harmonique non
commutative. La théorie s’est ensuite énormément développée et ramifiée sous la maitrise
d’ceuvre de Gelfand.

Le réve de Burnside de mettre a profit I'impressionnante effectivité de la théorie des
représentations linéaires pour classifier tous les groupes finis simples s’est finalement réa-
lisé au bout d’un siecle. Entre-temps, cette théorie avait permis a Killing et Cartan de
classifier tous les groupes infinis «continus» simples. Nous terminerons en expliquant
comment le probleme général de classification des représentations linéaires mene a une
trichotomie (fini, modéré, sauvage), et comment I'indécidabilité surgit au coeur de situa-
tions extrémement concretes et apparemment élémentaires.

Plan
Linéarité. Linéarisation.

Le concept mathématique de représentation.

Représentations linéaires des groupes.
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Représentations linéaires et problemes de classification.
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1 Linéarité. Linéarisation.

1.1 Bref retour a I’algebre linéaire.

Comme nous 'affirmions au début du premier exposé, I’algebre linéaire est la partie
la plus simple des mathématiques. Elle consiste, rappelons-le, en I'étude des espaces
vectoriels (espaces ou les points nommés vecteurs peuvent étre additionnés entre eux et
multipliés par des nombres) et des applications linéaires qui relient ces espaces - et tout
particulierement, de l'algébre £(V') des applications linéaires F' d’un espace vectoriel V'
dans lui-méme (munie de l'addition et de la composition).

Supposons V' de dimension finie. Dans une base donnée e, ..., e,, les vecteurs sont
repérés par leurs coordonnées. Un opérateur F' € L(V) étant donné, les coordonnées
)\2 des vecteurs F'(e;) forment une matrice A, c’est-a-dire un tableau carré de nombres
(disons des nombres complexes).

La matrice A de F' dépend de la base choisie. Qu’est-ce qui, de la matrice A, reste
invariant par changement de base ?

L’invariant le plus simple est la trace de A, c’est-a-dire la somme de ses coefficients
diagonaux \! :

trA:Z)\ﬁ =trF,

qui jouera un role important dans la suite. En fait, tr F' est la somme > u;(F) des
valeurs propres de F', qui ne sont autres que les éléments du spectre de F comptés
éventuellement plusieurs fois'. En outre, vis-a-vis de la composition des opérateurs, la
trace vérifie 'identité

tr FG = tr GF.

En dimension infinie, ¢’est plus compliqué : pour pouvoir écrire des sommes infinies, on
doit introduire un peu de topologie. La situation la plus commode est celle des espaces de
Hilbert, mais n’anticipons pas (ou plutot, ne revenons pas si tot sur le théme du premier
exposé)...

1.2 Linéarisation.

La linéarité est le caractere des situations ou problemes mathématiques dans lesquels
les multiplicités a I’ccuvre forment des espaces vectoriels. Le role de ’algebre linéaire est
précisément d’aider a traiter les problemes linéaires, c’est-a-dire ceux dont les solutions
forment a priori un espace vectoriel : la somme de deux solutions est encore une solution,
de méme que la multiplication d’une solution par une constante arbitraire.

La linéarisation, certainement 'une des démarches les plus universelles en mathéma-
tiques, des plus abstraites aux plus appliquées, consiste a essayer de ramener des pro-
blémes non-linéaires a des problemes linéaires, toujours plus abordables grace notamment
a la technologie élémentaire de I'algebre linéaire.

La linéarisation se retrouve aussi bien en analyse qu’en géométrie et en algebre. En
analyse, elle se présente sous la forme de I"approzimation au premier ordre.

Lcomme on I’a vu au § 4.1 du premier exposé, ces éléments sont les nombres p tels que F' — pul n’est

pas inversible.
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Ezemple 1. Soit f une fonction lisse d’une variable x («lisse» évoque, intuitivement,
quelque chose comme «agréable a caresser» ; formellement : «indéfiniment différentiables.
Pourvoir les chalnons manquants dans I’évolution putative de la notion intuitive a la
notion formelle est une gageure tant pour les sciences cognitives que pour ’histoire des
mathématiques...)

Une telle fonction admet un développement en puissances? de la variable 2

f(x) = ag + a1x + axx® + azax® + . ..

ol les a; sont des constantes. La linéarisée de f est ap + a1z (cela revient si P'on veut
A poser, quelque peu brutalement, x> = 0 dans le développement de f). Avantages
quantitatifs et qualitatifs : bonne approximation numérique en pratique, et détection de
la croissance (positivité de aq).

Du point de vue géométrique, cela revient a remplacer le graphe de la fonction f par
sa tangente au point d’abscisse 0. Noter qu’on reconstruit f en prenant l’enveloppe de
ses tangentes (en tous les points du graphe). Plus généralement prendre ’espace tangent
d’une variété en un point est une forme de linéarisation.

Ezemple 2. Prenons par exemple un groupe «continu» G de transformations («groupe
de Lie»), par exemple le groupe GL(V') des applications linéaires inversibles de V' dans
V. L’espace tangent en l'identité est 1'algébre de Lie de G (celle de GL(V') est L(V),
l’espace des applications linéaires de V' dans V). Elle est munie d’opération «crochet de
Lie» [, ] que 'on obtient en «linéarisant» le commutateur

91,92 — 919291 g5 "

(en fait en regardant le terme d’ordre 2 car il n’y a pas de terme d’ordre 1). La structure
d’algebre de Lie? de G est une forme linéarisée de la structure de groupe de Lie.

Ezemple 3. Les systemes dynamiques, qui modélisent mathématiquement I’évolution
de toutes sortes de systemes physiques, biologiques, économiques etc..., sont souvent
non-linéaires. Considérons par exemple un systeme du type

dy/dt = F(y,t),

ou t désigne la variable temporelle et y = (y1, . .., ¥, ) un ensemble de quantités dépendant
du temps. Au voisinage d’un point d’équilibre yg, on peut linéariser le systéme, ce qui
donne

dy/dt = DF (yo,t)(y — %),

ot DF(yo,t) est maintenant une matrice. De nombreux théorémes de la théorie des
systemes dynamiques ont pour objet de prédire le comportement du systéme en fonction
du spectre de la matrice DF (yo,t) (e.g. si le spectre est négatif, ’équilibre est stable...).

2en pratique, souvent, ce développement converge et f en est la somme; on dit alors que f est
analytique. La théorie des développements asymptotiques, qui a fait une apparition-éclair & la fin du §
4 de ’exposé précédent, permet de donner sens a ces développements méme dans le cas divergent.
3espace vectoriel muni d’une opération «crochet de Lie» vérifiant des axiomes convenables.
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2 Le concept mathématique de représentation.

Nous le ferons émerger de trois doublets successifs : objets généraux/objets particu-
liers, mode intrinseque/mode extrinséque, présentation/représentation.

2.1 Objets généraux/objets particuliers.

Il s’agit 1a d’une distinction? imprécise et presque triviale, mais omniprésente dans le
champ mathématique (et pourtant peu soulignée).

Appelons objets généraux ces objets indifférenciés dans leur type d’étre mathématique,
ceux qu’accompagne, plus ou moins tacitement, ’adjectif «quelconque» - comme dans
les expressions canoniques «soit ABC' un triangle quelconque», «considérons un groupe
G» etc...

Souvent, les objets généraux que ’on considére sont tout simplement les objets d’une
catégorie donnée (groupes, espaces vectoriels, espaces topologiques, etc...). Un point de
vue structuraliste outrancier voudrait que ce soit toujours le cas; autrement dit, qu'un
objet mathématique général ne soit rien d’autre qu’'une espece de structure.

Or ce n’est pas toujours le cas, tant s’en faut : par exemple, les systémes dynamiques
évoqués ci-dessus sont les objets généraux d’un immense chapitre des mathématiques, qui
ne se laissent pas enfermer dans une saisie catégorique - si ce n’est fort artificiellement.

Soit dit en passant, il importe d’étre conscient des limites de ’approche catégorique, et
surtout de ne pas confondre a cet égard trois «ordres d’universalité» : la notion mathéma-
tique d’«universalité» que la théorie des catégories thématise, I’«universalité» théorique
d’application de ses concepts formels (liée au fait que par nature, cette théorie occulte la
structure interne des objets), et '«universalité» - ou plutét la généralité - relativement
limitée, voire précaire, de son importance pratique dans le champ mathématique tout
entier.

Les objets particuliers, quant a eux, sont des sortes de «personnages» mathématiques
qui ont un nom propre. Ils interagissent les uns avec les autres, et avec les objets généraux.
Nous en avons déja rencontré quelques specimens remarquables au cours de ces exposés :

- le facteur moyennable de type II; dans la théorie de von Neumann (et plus récem-
ment héros de la logique des interactions de Girard),

- la logique classique (parmi toutes les logiques intuitionnistes),

- le groupe de Galois absolu Gal(Q/Q) (objet central de la théorie des nombres),

- le groupe de Galois cosmique (qui agit sur les constantes de toutes les théories
quantiques des champs).

Ces objets particuliers sont d’autant plus fascinants qu’ils sont plus protéiformes et
ubiquitaires, c’est-a-dire qu’ils admettent de nombreuses descriptions différentes et inter-
viennent de fagon différente dans plusieurs théories mathématiques. Cette combinaison
de singularité et d’ubiquité enchante bien des mathématiciens, qui considerent de tels
objets particuliers remarquables comme les joyaux de leur discipline. Leur apparition in-
opinée dans une théorie mathématique qui les ignorait est le présage de développements
exaltants, I'un des catalyseurs de l'unité des mathématiques en acte. L’explication de

4cette terminologie n’est guére satisfaisante. Nous I’employons par défaut, le doublet «géné-
rique/singulier» étant déja fort employé en mathématique.
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cette apparition passe souvent par le fagconnage d’objets mathématiques généraux tout a
fait nouveaux. L’exporation de ce nouvel inconnu peut alors mener, apres un apre travail,
a une classification qui fait apparaitre de nouveaux objets particuliers.

Cette dialectique entre objets généraux et objets particuliers, qui nous semble étre
I’'un des moteurs de la recherche mathématique, ne semble pas avoir attiré ’attention des
épistémologues.

2.2 Mode intrinséque/mode extrinséque.

La question qu’on se pose maintenant est celle du mode sous lequel tel ou tel objet
mathématique particulier est constitué/envisagé.

Prenons, pour fixer les idées, le cas d’objets géométriques. Traditionnellement, c’est-
a-dire depuis les Anciens jusqu’a Gauss, ils étaient envisagés par rapport a un référent
géométrique : le plan ou bien ’espace euclidien de dimension trois; I’étude portait donc
sur 1’objet plongé.

C’est Gauss qui, dans son étude fondamentale des surfaces, a mis 'accent sur les
propriétés intrinséques®, c’est-a-dire indépendantes du plongement dans le référent. Cela
suppose déja une vision claire de l'identité (ou plus correctement, de I’«isomorphiex)
d’objets géométriques plongés différemment dans un référent. On peut y voir I'une des
sources de 'importance prise peu a peu par la notion générale d’isomorphisme, puis de
morphisme.

Toutefois, si c’est la notion intrinseque qui importe en fin de compte, il ne s’agit pas
pour autant de se débarrasser d’un référent, la donnée méme d’un objet mathématique
particulier se faisant tres souvent de maniere extrinseque, e.g. via des équations. Le
caractere intrinseque des objets et propriétés considérés permet alors, selon un libre jeu
de changements de reperes, de choisir la description la plus commode selon les besoins.

Ezemple. Reprenons le cas, évoqué au début de cet exposé, d'un opérateur linéaire F' €
L(V). Bien souvent, ce qui est donné en pratique, ce n’est pas F' lui-méme, mais le tableau
carré de nombres qu’est sa matrice A. L’opérateur F' est 'objet abstrait intrinseque défini
par A dans une base donnée, c’est-a-dire une fois V' identifié a C™.

Cette définition est donc de nature extrinseque : elle dépend du choix d’une base.
Lorsqu’on la change, A se change en une matrice du type PAP ™!, et on peut par exemple
tirer profit de cette variation pour se ramener au cas commode d’une matrice triangulaire
(i.e. n’ayant que des 0 au-dessous de la diagonale).

Nous allons maintenant discuter deux modes extrinseques de se donner un objet ma-
thématique particulier : la présentation et la représentation.

Ces deux modes sont de caractéres opposés : la présentation est une description abs-
traite, formelle, symbolique de 1'objet considéré, tandis que la représentation vise a une
«concrétisation», une «réalisation», une «incarnation» de cet objet.

2.3 Présentations.

Présenter un objet mathématique, c’est ’exhiber en termes de générateurs et rela-
tions.

5comme me le rappelle F. Nicolas, la dialectique intrinseque/extrinséque a été bien thématisée par
A. Lautman [6, II].
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Pour fixer les idées, considérons le cas d’un groupe. Présenter un groupe G, c’est se
donner G par générateurs g; et relations r;, de la maniére suivante :

- les g; sont des symboles (sans contenu sémantique spécifié), chacun étant accompagné
d’un autre symbole g;” ! (appelé inverse de g;). On consideére I'alphabet (fini ou infini)
formé des g; et des g, L

-les r; =ri(gi 9, 1) sont certains mots écrits dans cet alphabet,

- les éléments de G sont les mots qu’on peut écrire dans cet alphabet, modulo les
relations v,

- la loi de composition de G est donnée par la concaténation des mots mis bout a
bout. L’élément neutre est le mot vide (sans lettre), noté 1 ou simplement 1.

L’expression «modulo les relations r;» demande explication : on entend par 1a que deux

mots my et mo sont considérés comme définissant le méme élément de GG si on peut les

obtenir tous deux a partir d’un troisieme mot m en effacant a l'intérieur de m certaines
. -1 -1

séquences du type 7;, ou g;g; ~, ou g; gi.

On dit que le groupe G est de présentation finie s’il peut étre défini par un nombre
fini de générateurs g; et de relations r;.

Ezemple 1. Le groupe libre engendré par ¢y, . . ., g, est le groupe donné par les générateurs
g; et aucune relation. Si n = 1, on trouve le groupe des entiers Z (muni de I’addition). Si
n > 1, ce groupe s’identifie au groupe fondamental du plan privé de n points z1,...x,
(voir exposé 3) : les g; symbolisent des chemins partant et aboutissant & un point-base
fixé x, et tournant une fois autour du point manquant x; dans le sens trigonométrique.

Du point de vue des présentations, les groupes libres jouent le role de référents. Dans
ce mode extrinseque de description, un groupe n’apparait pas comme plongé dans un
référent, mais, dualement, comme quotient du référent.

Ezemple 2. Le groupe Z/127 des transpositions du systéme tempéré est donné par un
générateur g et une relation r = gggg9g9gggggg (g peut représenter la classe de 1 ou
de 5 ou de 7 ou encore de 11 dans Z/12Z, au choix). Une autre présentation de ce
groupe consiste a prendre deux générateurs gp, go et trois relations ry = g19191, 72 =
glgggflggl, r3s = gag29292 (g1 peut représenter la classe de 4 et go celle de 3 dans
Z /127 1a relation ro assure la commutativité). On voit donc quun groupe donné admet
plusieurs présentations, qu’elles sont extrinseques, et contiennent pas mal d’arbitraire.

Tout élémentaire et formel que paraisse ce mode de définition d’un groupe, surtout
dans le cas de présentation finie ou tout se réduit a concaténer et simplifier des mots sur
un alphabet fini, la présentation par générateurs et relations recéle en fait de redoutables
difficultés, dont le fameux probléme des mots de M. Dehn (1911) :

soit G le groupe donné par une présentation finie explicite (g;,r;). Donner un algo-
rithme pour déterminer si deux mots my et mo (sur lalphabet formé des g; et des gl-_l)
coincident modulo les relations r;, autrement dit, s’ils définissent le méme élément de G.

Toute la difficulté réside en ce qu’on ne connait pas de borne a priori pour la longueur
du mot m dont dériveraient m, et mo par simplification, s’ils définissaient le méme
élément de G. La réponse au probleme de Dehn a été apportée en 1955 par P. Novikov :

pour certains groupes G de présentation finie, le probleme des mots est indécidable.
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Ce résultat célebre est sans doute la premiere manifestation d’indécidabilité (au sens
usuel d’inexistence de machines de Turing capables de trancher algorithmiquement la
question) en dehors du domaine de la logique et de la théorie des ensembles.

Plus tard, Boone et Higman ont caractérisé les groupes G de présentation finie pour
lesquels le probleme des mots est décidable : ce sont ceux qui se plongent dans un
groupe simple qui lui-méme se plonge dans un groupe de présentation finie. De la a
savoir construire des groupes ou le probleme des mots est indécidable, il y a un grand
pas... et une riche théorie. Gardons-nous donc de confondre «indécidables (qui a un sens
logico-mathématique bien précis) et «inconnaissables» (qui n’en a aucun), et d’interpré-
ter l’indécidabilité comme on ne sait quel retrait du «manteaus mathématique devant le
«toucher de l'esprit».

2.4 Représentations.

Représenter un objet mathématique, c’est le décrire en termes de son action sur
d’autres objets X préalablement connus.

Pour fixer les idées, reprenons le cas d'un groupe. Représenter un groupe G, c’est se
donner G comme groupe de symétries d’'un ensemble structuré X. Dans une acception
un peu plus générale, c’est se donner un morphisme®

G — Aut X

du groupe G vers le groupe des automorphismes de X. On parle aussi d’action de G sur
X, et on note g - x I’élément de X qui est le résultat de I'action de I’élément g € G sur
I’élément x € X.

Ezemple 1. Tout groupe G agit sur lui-méme (de plusieurs fagons, en fait), par exemple
par translations a gauche : g - z étant le produit de g et de x dans G. Ce faisant, G
s’incarne comme un groupe de permutations particulieres de ses éléments.

Ezemple 2. Le programme d’Erlangen de Klein évoqué dans I'exposé précédent (§ 2.2)
fournit de nombreux exemples d’actions de groupes de déplacements sur des figures géo-
métriques. Ce programme est en fait une réflexion de fond sur la notion d’action en
géométrie.

2.5 Représentations linéaires.

Une représentation est d’autant plus efficace que le substrat X de ’action est élémen-
taire ou bien connu. Le cas d’un espace vectoriel est a cet égard prometteur.

On parle de représentation linéaire lorsque X est un espace vectoriel, qu’on note
plutoét V' comme d’habitude; le groupe des automorphismes de V n’est autre que GL(V).
Lorsque V' est de dimension finie, on parle de représentation linéaire de dimension finie.

Une représentation linéaire d’un groupe G dans ’espace vectoriel V', c’est donc un
morphisme de groupes”

p: G— GL(V).

6 est-a-dire une application qui respecte la composition.

7si G est muni d’une topologie, il est naturel de requérir que ce morphisme soit continu.
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En dimension finie et sous I'’hypothése que p injectif®, représenter linéairement un
groupe abstrait G, c’est donc le représenter «concrétements comme groupe de matrices”.
Une représentation linéaire est dite irréductible si V n’a pas de sous-espace'® stable sous

I'action de G.

Le leitmotiv de la théorie des représentations linéaires des groupes est d’essayer de
«comprendre» un groupe abstrait G a partir de la collection de ses représentations li-
néaires (irréductibles).

Ezemple 1 (linéarisation 1). Partant d’une action d’un groupe G sur un ensemble struc-
turé X quelconque, voici comment en déduire une représentation linéaire de G. On prend
pour V T'espace vectoriel F/(X) formé des fonctions sur X & valeurs complexes'!, et on
fait agir G sur F(X) par la régle suivante qui définit 'action g - f :

(g-f)-z=flg™" )
(ot  désigne un élément de X, f un élément de F(X), g un élément de G).

Par exemple si G agit sur X = G par translation, la représentation linéaire ainsi
obtenue (dans l'espace F'(G) des fonctions sur G) s’appelle la représentation réguliére de
G et est notée preg.

Ezemple 2 (linéarisation 2). Reprenons 'exemple 1 du numéro précédent, dans le cas
particulier d'un groupe continu de transformations G (groupe de Lie). Par linéarisation,
I’action de G sur lui-méme induit une représentation linéaire de G sur son algebre de Lie.

Ezxemple 3. Considérons une équation différentielle linéaire d’ordre n

n

d"y dy B
Jon + e +p1(az)% + po(x) =0,

les coefficients p;(x) étant des polyndémes. Les singularités de cette équation sont les ra-
cines 1, . . . &, du polynéme p,,(x). Au voisinage de tout point = distinct des singularités,
les solutions de cette équation différentielle linéaire d’ordre n forment un espace vectoriel
V' de dimension n. Mais quand on «suit» une solution y le long d’un chemin partant de
x et aboutissant a z, mais entourant une ou plusieurs singularités, on retombe en général
sur une autre solution de I’équation!?. Ainsi, le groupe fondamental du plan privé de
Z1,...,Ty agit sur V : on obtient une représentation du groupe libre & n générateurs,
dite représentation de monodromie.

pn()

Pour clore ce paragraphe, mentionnons brievement deux opérations utiles sur les
représentations linéaires :

- la somme de deux représentations p @ p' : G — GL(V & V’). L’espace sous-jacent
consiste en les couples formés d’un vecteur de V et d’un vecteur de V’. L’action de g € G
est donnée par la formule g- (v,0v") = (g-v,g-v').

- le produit tensoriel!® de deux représentations p ® p' : G — GL(V @ V’). Si les
e; forment une base de V et les €/, une base de V', une base de V @ V' est formée des

j
symboles e; ®@e’. L'action de g € G est donnée par la formule g-(e;®e}) = (g-€;)®(g-€}).

8¢’est-a-dire faisant de G' un sous-groupe de GL(V).

9on renvoie au § 1.3 du premier exposé pour la définition de la composée de deux matrices.
10distinct de {0} et de lui-méme, bien entendu.

1variante utile en dimension infinie : on peut imposer diverses conditions sur ces fonctions.
12voir le § 4 de 'exposé précédent.

13dont I’intérét apparaitra plus bas, § 3.3.
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3 Représentations linéaires des groupes.

3.1 Caracteres : la théorie de Frobenius.

La théorie des représentations linéaires des groupes finis est née en 1896, grace aux
efforts de G. Frobenius pour répondre aux questions de R. Dedekind, qui se heurtait a
des calculs inextricables en théorie de Galois des équations algébriques, des que le degré
dépassait 4. Le concept fondamental de sa théorie est celui de caractere.

Soit G un groupe a N éléments. On note Fi.n:(G) le sous-espace de F(G) formé des
fonctions centrales, c’est-a-dire des fonctions f (& valeurs complexes) vérifiant f(gg’') =
f(g’g) pour tout couple (g,g’) d’éléments de G. Le produit scalaire

(fi. f2) = % > fi(9)fa(g)

geG

fait de Feent(G) un espace euclidien complexe (voir exposé 1, § 3.1).

Soit maintenant p : G — GL(V) une représentation de dimension finie de G. Son
caractére X, est la fonction sur G & valeurs complexes définie par la trace :

Xp(9) = tr p(g).

Par la propriété fondamentale de la trace, c’est un élément de Ficpnt(G).

Il s’avere qu’une représentation p est completement déterminée par son caractere x,.
En outre, cette correspondance de Frobenius entre représentations et caractéres jouit des
propriétés remarquables suivantes :

- p est irréductible < x, est unitaire : (x,, x,) =1,

- les caracteres unitaires forment une base orthonormée de Fi...:(G); pour toute
élément f € Foent(G), on a donc la décomposition

F=> {fxn)xn

ou Y, parcourt les caracteres unitaires,

= Xp@p' = Xp T Xp' €6 Xpop' = Xp-Xp's

- toute représentation p de dimension finie de G est somme directe de représentations
irréductibles. La multiplicité avec laquelle la représentation irréductible de caractere x,
apparait dans p est (X,,Xn). Cas particulier : la décomposition de la représentation
réguliere est : preq = @ (dim py,) pp, OU p,, parcourt toutes les représentations irréductibles.

La correspondance de Frobenius permet d’associer a tout groupe fini sa table de
caractéres, c’est-a-dire le tableau de nombres complexes dont les entrées sont les valeurs
des caracteres unitaires'®, et cette table détermine le groupe. Cette correspondance réalise
ainsi 'exploit de ramener en principe la structure du groupe fini abstrait G a de simples

14comme les caracteres sont des fonctions centrales, on peut se limiter & considérer leurs valeurs sur des

représentations des classes de conjugaison de G, ce qui permet d’obtenir un tableau carré. Par ailleurs
ces valeurs sont des nombres d’un type bien particulier : comme tout élément g de G vérifie gV = 14,
toute valeur propre u de p(g) vérifie uN = 1, de sorte que les valeurs de caractéres sont toujours des
sommes de racines N-iémes de 'unité.
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données numériques. Conformément au leimotiv énoncé ci-dessus, des renseignements sur
la table de caracteres donnent des renseignements sur le groupe. Par exemple, on montre
facilement qu'un groupe fini G est

- simple'® si et seulement si pour tout g # 1 et pour tout caractere x # 1, x(g) # x(1g).
- commutatif si et seulement si pour tout caractére unitaire x, x(1g) = 1.

Bien entendu, pour exploiter a fond cette correspondance, encore faut-il la rendre ex-
plicite, c’est-a-dire savoir calculer la table des caracteres. Il existe pour cela un algorithme
simple d & W. Burnside, 'un des fondateurs de la théorie (voir [6, § 2]).

3.2 Représentations linéaires des groupes compacts et analyse
harmonique. L’apport de Weyl.

Comme nous l’avons rappelé lors du premier exposé (§ 3.2), on définit en analyse de
Fourier le produit scalaire de deux fonctions périodiques fi(t) et fa(t) de période 27 par

la formule . d
- t
< fi, f2 >= fl(t)fz(t)f-
. 7r
L’espace L?(U(1)) des fonctions f pour lesquelles < f, f > est bien défini est un espace
de Hilbert!®. Une base orthonormée est donnée par e, = eV~1" (ol n est un entier

quelconque), et tout f € L?(U(1)) s’écrit de maniere unique
f:Z < fyen > en.
n

C’est H. Weyl qui semble avoir remarqué le premier 'analogie (frappante!) entre ces
formules et les formules ci-dessus. Ci-dessus, on avait affaire & un groupe fini G (non
nécessairement commutatif), et & un espace euclidien de dimension finie dont le produit
scalaire était défini par une somme finie. Ici, on a affaire au groupe topologique com-
mutatif (infini) des rotations planes (qu’on peut identifier au cercle unité U(1), chaque
rotation étant épinglée par son angle t €] — w,7]), et & un espace de Hilbert dont le
produit scalaire est défini par une intégrale relative a la mesure de probabilité d—fr sur

2
U(1); les e, sont les caracteres unitaires de U(1).

En mathématique, toute analogie est une aubaine : le chercheur n’a de cesse de la creu-
ser jusqu’a sa disparition/absorption dans une théorie qui englobe les théories jumelles.
C’est ce qu’a fait Weyl : il a étendu la théorie de Frobenius aux représentations linéaires
de dimension finie des groupes (topologiques) compacts non nécessairement commutatifs,
et créé I'analyse harmonique non commutative.

Le prototype d’'un groupe compact est le groupe U(n) des opérateurs unitaires d’un
espace euclidien de dimension n, voir exposé 1, § 3.1.

L’analogue pour un groupe compact G de la décomposition de la représentation ré-
guliere d’un groupe fini, c’est le théoréeme de Peter-Weyl : L2, ,(G) se décompose selon
les représentations irréductibles de G (il y en a une infinité), chacune intervenant avec
une multiplicité égale & sa dimension (voir par exemple [6]).

15¢%est-a-dire n’admet pas de quotient non trivial ; mais, attention, il peut admettre des sous-groupes

non-triviaux, qui ne seront pas normaux.

16¢’est-a-dire un espace euclidien complet de dimension infinie.
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3.3 Probleme de Tannaka.

Etant donné un groupe compact G, on dispose de la catégorie Rep G des représenta-
tions linéaires de dimension finie de G'7.

Le leitmotiv général de la théorie des représentations linéaires formulé ci-dessus (§
2.5) incite & poser le probléeme suivant (probleme de Tannaka) :

Peut-on reconstituer G a partir de Rep G ¢

La réponse est «non... mais presque». Rappelons (ibidem) que Rep G est munie d’une
opération interne «produit tensoriel» ®. Le théoreme de Tannaka dit qu’on peut bel et
bien reconstruire G a partir de la catégorie Rep G munie de ®.

C’est par le biais d’une vaste généralisation de ce résultat que Grothendieck est par-
venu a l'idée de groupe de Galois motivique, qui a fait une apparition furtive dans ’exposé
précédent (§ 5)18.

3.4 Représentations linéaires et mécanique quantique.

Le produit tensoriel, congu en algebre et pour 1'algebre, a fait fortune en mécanique
quantique : I’état de n particules est décrit non par la somme, mais par le produit tenso-
riel de n espaces de Hilbert H. Du principe d’indiscernabilité des particules identiques,
on déduit une action du groupe &,, des permutations sur n objets sur H®". Dés les an-
nées 1926-27, E. Wigner étudiait cette représentation linéaire. A la méme époque, Weyl
s’'intéressait aux représentations unitaires de dimension infinie du groupe additif des réels
R qui apparaissent en mécanique quantique sous la forme ¢t — eV=1tH o3 [ est un opé-
rateur hamiltonien (voir exposé 1, § 5.3). La synthese [9] qu’il a écrite sur la théorie des
représentations et la mécanique quantique, parue en 1928 (soit fort peu apres les travaux
fondateurs de Heisenberg et Schrédinger), a eu une influence considérable.

Les théories de jauge, dont les origines remontent d’ailleurs aussi & Weyl, ont par la
suite contribué a renforcer 'importance de la théorie des représentations en physique des
particules. Selon ces théories, ¢’est grosso modo U(1) qui gouverne I’électro-magnétisme,
U(2) les forces électro-faibles, U(3) les interactions fortes (les quarks qui, avec les leptons,
constituent la matiere, furent introduits dans la théorie par Gell-Man et Neeman en 1964
sur la base de considérations sur les représentations de U(3)).

3.5 Représentations linéaires en dimension infinie. La théorie de
von Neumann et I’école de Gelfand.

Les travaux de Weyl ont ouvert une nouvelle ere dans la théorie des représentations :
celle de 'étude des représentations de dimension infinie (de préférence unitaires) des
groupes topologiques G.

17un morphisme de représentations n’étant autre qu’une application linéaire compatible aux actions
de G.

18signalons au passage que ’étude des représentations linéaires du groupe de Galois absolu Gal(@/@)
(exposé précédent, § 3.1) est 'un des domaines les plus actifs de la théorie des nombres contemporaine.
Pour un groupe compact totalement discontinu comme Gal(@/@), ce n’est d’ailleurs pas le corps C des
nombres complexes qui est le corps naturel de coefficients de ces représentations galoisiennes, mais ce
sont ce qu’on appelle les corps p-adiques.

69



Yves André

Deux théories, ou deux écoles, en sont nées : la théorie des algebres d’opérateurs de
von Neumann évoquée dans le premier exposé, et 1’école de Gelfand.

Le lien entre représentations linéaires et algebres d’opérateurs est le suivant. Soit
p : G — U(H) une représentation unitaire d’'un groupe topologique G dans un espace
de Hilbert H. Alors le commutant de p(G) dans L(H) est une algébre de von Neumann
(voir exposé 1, § 5.1).

I. Gelfand (& qui l’on attribue le slogan «tout probléme mathématique est un probléeme
de représentation») et son école se sont principalement occupés de construire et classer
des représentations. La théorie est extrémement ramifiée, mais il en émerge un principe
directeur (principe de Kirillov) : les représentations irréductibles de dimension infinie d’un
groupe de Lie correspondent & certaines orbites pour I’action de ce groupe sur (le dual de)
son algebre de Lie (orbites soumises & une certaine condition de «quantifications, dans
Pesprit de la mécanique quantique). Ce principe permet de se ramener a des problemes
de dimension finie.

4 Représentations linéaires et problemes de classifi-
cation.

«Tout ce qui peut se ranger lui plaisait.»
G. Cuvier, Eloge de Werner, cité dans [2]

Nous avons déja dit quelques mots sur le role de la classification en mathématique au
§ 5.4 du premier exposé. Ce role étant moins connu que dans d’autres sciences, les clas-
sifications paraissent davantage préservées, dans le domaine mathématique, du discrédit
culturel actuel qui bannit presque du champ de la pensée ces avatars scientifiques de la
philatélie, la patience illimitée qu’exige leur exercice étant percue comme ’antithese de
I’éclair de génie.

On sait pourtant comment les grands travaux systématiques botaniques et zoolo-
giques, de Linné a Lamark et Cuvier, ont forgé, lors de I’élaboration de schemes classi-
ficatoires «naturels», la compréhension progressive de la structure visible et de 'orga-
nisation des étres vivants; comment la problématique de la classification des éléments
simples, culminant avec la combinatoire du tableau périodique de Mendeleieff des 92, a
contribué a fagonner la rationalité chimique (cf. [2, ch. III]), etc...

De méme, en mathématique, certaines classifications ont eu une importance concep-
tuelle qui dépasse de bien loin les problemes de rangement'® ; c’est certainement le cas
de celles que nous allons évoquer ci-dessous.

Les classifications portent sur des objets généraux (au sens du § 2.1), mais font parfois
apparaitre en fin de compte des objets particuliers tout a fait imprévus; un tel passage
ne s’obtient pas par une simple méditation dialectique sur les objets généraux considérés.

19i] y aurait certes bien des distinctions & faire parmi entre classifications, mais c’est & un philosophe
des sciences qu’il revient d’en parler. Remarquons seulement qu’il ne s’agit dans ce chapitre que du cas
ou la classification aboutit & des listes dénombrables. Bien d’autres problemes de classification mettent
en jeu a la fois des invariants discrets et des modules continus qui forment parfois des objets de méme

nature générale que ceux que 'on classifie.
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4.1 Classification des groupes finis simples.

Un exemple emblématique de classification mathématique est celui de la classification
des groupes finis simples. Rappelons encore une fois qu'un groupe fini est dit simple s’il
n’a pas de quotient non trivial, ou ce qui revient au méme, s’il n’a pas de sous-groupe
normal non trivial (voir I'exposé 3, § 1.3)%°. Tout groupe fini se «dévisse» en groupes
finis simples, qui sont, eux, «indévissables».

Le réve de Burnside de classifier, en s’appuyant sur la théorie des représentations, les
groupes finis simples a finalement abouti, au bout d’un siecle de travail monumental. On
a la liste complete : trois séries infinies mais élémentaires

- groupes cycliques d’ordre premier,

- groupes alternés?!,

- groupes simples de type de Lie??,

plus 26 groupes sporadiques®, dont le plus gros, appelé «Monstres, a
808017424794512875886459904961710757005754368000000000

éléments (il est construit par «représentation», comme groupe de symétries d’une certaine
structure remarquable de dimension 196883).

Les 5 premiers groupes sporadiques ont été découverts par Mathieu en 1860. Il a
fallu plus d’un siecle pour qu’un 6eéme n’apparaisse, au cours du travail de classification.
La fin de ce travail avait été annoncée en 1983, mais un «trou» a été repéré dans une
démonstration, trou qui a été «bouché» grace a un article-rustine de 1300 pages!

La classification est désormais réputée achevée et les experts sont en train de rédiger
une preuve «de seconde générations, plus compacte (environ 5000 pages si tout va bien!)
et plus conceptuelle.

Qu’en est-il de la classification des représentations linéaires des groupes finis simples 7
Autrement dit, que sait-on de leurs tables de caracteres ?

Pour les groupes cycliques ou alternés, elles étaient déja connues de Frobenius. Pour les
groupes sporadiques, on possede des atlas de tables de caracteres. La question des tables
de caractéres des groupes finis de type de Lie est en revanche ouverte, c’est méme 1’objet
d’un champ d’investigation vaste et tres actif sous la maitrise d’ceuvre de G. Luzstig.
Celui-ci a proposé une étonnante conjecture reliant les représentations des groupes finis
simples de type de Lie aux représentations des groupes quantiques.

4.2 Classification des groupes de Lie simples.

Entre-temps, Cartan et Killing avaient classifié les groupes de Lie réels et complexes
simples G. La classification se rameéne a celle des algebres de Lie simples Lie G. Un peu
comme dans la théorie de Frobenius pour les groupes finis, mais de maniére beaucoup
plus sophistiquée, apparait de la géométrie euclidienne.

20]a, notion, sinon le qualificatif, est due & Galois.

2lcvest-a-dire groupes de permutations de n lettres composés d’un nombre impair d’échanges de deux
lettres. C’est Galois qui a montré que ce sont des groupes simples dés que n > 5

22ce sont, grosso modo, des groupes de matrices & coefficients dans un corps fini.

23ce qualificatif est dii & Burnside.
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En fait, & toute algebre de Lie complexe simple?* (ou somme directe de telles) est
associée un petit bijou de géométrie euclidienne réelle appelé systéme de racines, qui
consiste en un ensemble fini & de vecteurs qui engendrent I'espace et qui vérifient les 3
propriétés suivantes :

- pour tout o € ®, les seuls éléments de ® proportionnels & « sont a et —a,

- pour tout o € ¢, ® est stable par réflexion s, par rapport a 'hyperplan perpendi-

culaire a «,
- pour tous «, 8 € ®, la projection orthogonale de § sur la droite menée par « est un

multiple demi-entier de a.
Le groupe de Weyl est le groupe fini de symétries de ® engendré par les réflexions s,.

Fig. 4.1. Systémes de racines en dimension 2.

Il reste a classifier les systemes de racines : ¢’est affaire de combinatoire et de géométrie
euclidienne élémentaire, quoique subtile. Ceux qui sont indécomposables (ce sont ceux qui
correspondent effectivement & des algeébres de Lie simples) se laissent épingler, chacun,
par un diagramme de Dynkin, dont voici la liste (on a pu dire que ces diagrammes de

Dynkin sont des sortes de «lutins qui infestent les mathématiques»)2° :
A,: o—0o—---—0—0
B,: o—o—+--—0=o0
C,: o—o0o—---—0<«o0
)
D, : 0—0—: =0
0]
EGZ
O — O0— [e) — O —O

24sic! Complexe veut dire ici & coeffients dans le corps des nombres complexes, simple veut dire sans

quotient non-trivial.
25]eur signification est en gros la suivante : les sommets - ou petits cercles - figurent les racines simples,

N

desquelles toutes les racines se déduisent par combinaison linéaire & coefficients tous positifs ou tous
négatifs; les arétes figurent l'angle entre deux racines simples non perpendiculaires - simple aréte si

I’angle est de 120° etc...
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o — O0— (@] — O — 0 —0

Eg:

o — O0— 0] — 0 —0—0—0
Fy: o—o=o0—o0
Gy: o=o.

En conclusion, il y a 4 familles infinies (A4,,, By, Cy, D, ) d’algébres de Lie complexes
simples?®, plus 5 exceptionnelles (Es, E7, Es, Fy, G2).

Le probleme de la classification des représentations des groupes de Lie simples a
été résolu par Weyl pour l'essentiel, qui a donné une formule fondamentale pour les
caracteres. Il y a une relation entre les représentations de chacun de ces groupes continus
et les représentations du groupe de Weyl (fini) correspondant.

4.3 Classification des représentations linéaires et indécidabilité.

Reprenons la notion de représentation linéaire dans son acception générale. On s’est
attaché ci-dessus au cas des groupes (abstraits ou topologiques), mais on peut représenter
linéairement d’autres structures. La situation la plus générale, semble-t-il, est celle des
carquois.

Les carquois sont des graphes (en général finis) dont les arétes (qui peuvent étre
multiples) sont orientées. Signalons en passant leur intervention récente dans la théorie
des gestes musicaux de M. Andreatta et G. Mazzola [1].

Une représentation linéaire d’un carquois @, c’est la donnée, pour tout sommet x de
@, d’un espace vectoriel V,, (disons de dimension finie pour fixer les idées), et pour toute
aréte a liant les sommets x et y d’une application linéaire F;, de V. dans V.

Comme pour les représentations de groupes, il y a une notion naturelle de somme,
et une représentation est dite indécomposable si elle ne se laisse pas décomposer (non
trivialement) en somme.

La question de la classification des représentations linéaires des carquois meéne alors a
une trichotomie résumée dans le merveilleux théoreme de Gabriel, Nazarova et al. (voir
[3, 4.4]) ol resurgissent, tels Scarbo, les diagrammes de Dynkin :

THEOREME : Soit Q un carquois. On a la trichotomie suivante :

1) @Q n'a qu’un nombre fini de représentations indécomposables si et seulement si c’est
un diagramme de Dynkin.

2) Q a une infinité de représentations indécomposables classifiables algébriquement
(en un sens précis que nous n’éluciderons pas ici) si et seulement si ¢’est un diagramme
de Dynkin étendu?”.

26]es groupes associés sont issus de la géométrie euclidienne réelle ou complexe, ou de la géométrie
symplectique.

27obtenu par adjonction d’un sommet & un diagramme de Dynkin selon une régle simple que nous ne
préciserons pas ici.
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3) En dehors de ces deuz cas, la «théories des représentations de Q) est indécidable.

En fait, la démonstration de I'indécidabilité dans le cas 3) se fait en codant le probleme
des mots de Dehn dans la théorie des représentations de Q!

Ezemple (Gelfand-Ponomarev). Soit @, le carquois ayant n sommets 1, ..., z, liés
par une aréte orientée vers un sommet central xg. La théorie des représentations de
Q.. équivaut a celle des systemes de n sous-espaces Vi,...V, d’un espace vectoriel 1,
considéré & isomorphisms pres. Il s’avere que @, est de type 1) (fini) pour n < 3, de
type 2) (modéré) pour n = 4, de type 3) (sauvage) pour n > 4 : il est donc impossible
de classifier, a isomorphisme pres, les systemes de 5 sous-espaces d’un espace vectoriel.

Kook >kook okok ok ok sk ok ok ook kok sk ok ko ok
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