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Représentations linéaires

«Plus une méthode est nouvelle et féconde,
plus elle étend le champ de l’inconnu.»
J. Bertrand, D’Alembert, cité dans [2]

Hegel parlait de «l’apparence bariolée du sensible». Ici, c’est plutôt «l’apparence
bariolée» de l’intelligible mathématique que nous voudrions rendre sensible. En espé-
rant faire entrevoir que le développement des mathématiques ne repose pas sur le seul
mouvement d’élévation conceptuelle, mais qu’au contraire la conquête de l’intelligible
mathématique s’appuie sur une dynamique de va-et-vient entre avancées conceptuelles et
retombées applicatives.

«Retombée» : n’y voyons surtout pas une chute d’Icare du ciel des Idées, mais ce mou-
vement essentiel par lequel les nouveaux concepts essaiment, se concrétisent, et fécondent
d’autres territoires mathématiques.

Ce second exposé sur le thème général des symétries s’ouvre sur un long préambule
présentant les idées fondamentales de linéarisation et de représentation en mathématique.
Nous esquisserons ensuite la théorie des représentations linéaires des groupes, initiée par
Frobenius à la fin du XIXème siècle (dans le cas des groupes finis). Un acteur majeur fut
H. Weyl qui, en liaison avec ses travaux sur les fondements de la mécanique quantique,
fit la jonction inattendue avec l’analyse de Fourier et créa l’analyse harmonique non
commutative. La théorie s’est ensuite énormément développée et ramifiée sous la mâıtrise
d’œuvre de Gelfand.

Le rêve de Burnside de mettre à profit l’impressionnante effectivité de la théorie des
représentations linéaires pour classifier tous les groupes finis simples s’est finalement réa-
lisé au bout d’un siècle. Entre-temps, cette théorie avait permis à Killing et Cartan de
classifier tous les groupes infinis «continus» simples. Nous terminerons en expliquant
comment le problème général de classification des représentations linéaires mène à une
trichotomie (fini, modéré, sauvage), et comment l’indécidabilité surgit au coeur de situa-
tions extrêmement concrètes et apparemment élémentaires.

Plan

1. Linéarité. Linéarisation.
2. Le concept mathématique de représentation.
3. Représentations linéaires des groupes.
4. Représentations linéaires et problèmes de classification.

********************
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1 Linéarité. Linéarisation.

1.1 Bref retour à l’algèbre linéaire.

Comme nous l’affirmions au début du premier exposé, l’algèbre linéaire est la partie
la plus simple des mathématiques. Elle consiste, rappelons-le, en l’étude des espaces
vectoriels (espaces où les points nommés vecteurs peuvent être additionnés entre eux et
multipliés par des nombres) et des applications linéaires qui relient ces espaces - et tout
particulièrement, de l’algèbre L(V ) des applications linéaires F d’un espace vectoriel V
dans lui-même (munie de l’addition et de la composition).

Supposons V de dimension finie. Dans une base donnée e1, . . . , en, les vecteurs sont
repérés par leurs coordonnées. Un opérateur F ∈ L(V ) étant donné, les coordonnées
λi

j des vecteurs F (ej) forment une matrice Λ, c’est-à-dire un tableau carré de nombres
(disons des nombres complexes).

La matrice Λ de F dépend de la base choisie. Qu’est-ce qui, de la matrice Λ, reste
invariant par changement de base ?

L’invariant le plus simple est la trace de Λ, c’est-à-dire la somme de ses coefficients
diagonaux λi

i :
tr Λ =

∑
λi

i = tr F,

qui jouera un rôle important dans la suite. En fait, tr F est la somme
∑

µi(F ) des
valeurs propres de F , qui ne sont autres que les éléments du spectre de F comptés
éventuellement plusieurs fois1. En outre, vis-à-vis de la composition des opérateurs, la
trace vérifie l’identité

tr FG = tr GF.

En dimension infinie, c’est plus compliqué : pour pouvoir écrire des sommes infinies, on
doit introduire un peu de topologie. La situation la plus commode est celle des espaces de
Hilbert, mais n’anticipons pas (ou plutôt, ne revenons pas si tôt sur le thème du premier
exposé)...

1.2 Linéarisation.

La linéarité est le caractère des situations ou problèmes mathématiques dans lesquels
les multiplicités à l’œuvre forment des espaces vectoriels. Le rôle de l’algèbre linéaire est
précisément d’aider à traiter les problèmes linéaires, c’est-à-dire ceux dont les solutions
forment a priori un espace vectoriel : la somme de deux solutions est encore une solution,
de même que la multiplication d’une solution par une constante arbitraire.

La linéarisation, certainement l’une des démarches les plus universelles en mathéma-
tiques, des plus abstraites aux plus appliquées, consiste à essayer de ramener des pro-
blèmes non-linéaires à des problèmes linéaires, toujours plus abordables grâce notamment
à la technologie élémentaire de l’algèbre linéaire.

La linéarisation se retrouve aussi bien en analyse qu’en géométrie et en algèbre. En
analyse, elle se présente sous la forme de l’approximation au premier ordre.

1comme on l’a vu au § 4.1 du premier exposé, ces éléments sont les nombres µ tels que F − µI n’est
pas inversible.
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Exemple 1. Soit f une fonction lisse d’une variable x («lisse» évoque, intuitivement,
quelque chose comme «agréable à caresser» ; formellement : «indéfiniment différentiable».
Pourvoir les châınons manquants dans l’évolution putative de la notion intuitive à la
notion formelle est une gageure tant pour les sciences cognitives que pour l’histoire des
mathématiques...)

Une telle fonction admet un développement en puissances2 de la variable x

f(x) = a0 + a1x + a2x
2 + a3x

3 + . . .

où les ai sont des constantes. La linéarisée de f est a0 + a1x (cela revient si l’on veut
à poser, quelque peu brutalement, x2 = 0 dans le développement de f). Avantages
quantitatifs et qualitatifs : bonne approximation numérique en pratique, et détection de
la croissance (positivité de a1).

Du point de vue géométrique, cela revient à remplacer le graphe de la fonction f par
sa tangente au point d’abscisse 0. Noter qu’on reconstruit f en prenant l’enveloppe de
ses tangentes (en tous les points du graphe). Plus généralement prendre l’espace tangent
d’une variété en un point est une forme de linéarisation.

Exemple 2. Prenons par exemple un groupe «continu» G de transformations («groupe
de Lie»), par exemple le groupe GL(V ) des applications linéaires inversibles de V dans
V . L’espace tangent en l’identité est l’algèbre de Lie de G (celle de GL(V ) est L(V ),
l’espace des applications linéaires de V dans V ). Elle est munie d’opération «crochet de
Lie» [ , ] que l’on obtient en «linéarisant» le commutateur

g1, g2 "→ g1g2g
−1
1 g−1

2

(en fait en regardant le terme d’ordre 2 car il n’y a pas de terme d’ordre 1). La structure
d’algèbre de Lie3 de G est une forme linéarisée de la structure de groupe de Lie.

Exemple 3. Les systèmes dynamiques, qui modélisent mathématiquement l’évolution
de toutes sortes de systèmes physiques, biologiques, économiques etc..., sont souvent
non-linéaires. Considérons par exemple un système du type

dy/dt = F (y, t),

où t désigne la variable temporelle et y = (y1, . . . , yn) un ensemble de quantités dépendant
du temps. Au voisinage d’un point d’équilibre y0, on peut linéariser le système, ce qui
donne

dy/dt = DF (y0, t)(y − y0),

où DF (y0, t) est maintenant une matrice. De nombreux théorèmes de la théorie des
systèmes dynamiques ont pour objet de prédire le comportement du système en fonction
du spectre de la matrice DF (y0, t) (e.g. si le spectre est négatif, l’équilibre est stable...).

2en pratique, souvent, ce développement converge et f en est la somme ; on dit alors que f est
analytique. La théorie des développements asymptotiques, qui a fait une apparition-éclair à la fin du §
4 de l’exposé précédent, permet de donner sens à ces développements même dans le cas divergent.

3espace vectoriel muni d’une opération «crochet de Lie» vérifiant des axiomes convenables.
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2 Le concept mathématique de représentation.

Nous le ferons émerger de trois doublets successifs : objets généraux/objets particu-
liers, mode intrinsèque/mode extrinsèque, présentation/représentation.

2.1 Objets généraux/objets particuliers.

Il s’agit là d’une distinction4 imprécise et presque triviale, mais omniprésente dans le
champ mathématique (et pourtant peu soulignée).

Appelons objets généraux ces objets indifférenciés dans leur type d’être mathématique,
ceux qu’accompagne, plus ou moins tacitement, l’adjectif «quelconque» - comme dans
les expressions canoniques «soit ABC un triangle quelconque», «considérons un groupe
G» etc...

Souvent, les objets généraux que l’on considère sont tout simplement les objets d’une
catégorie donnée (groupes, espaces vectoriels, espaces topologiques, etc...). Un point de
vue structuraliste outrancier voudrait que ce soit toujours le cas ; autrement dit, qu’un
objet mathématique général ne soit rien d’autre qu’une espèce de structure.

Or ce n’est pas toujours le cas, tant s’en faut : par exemple, les systèmes dynamiques
évoqués ci-dessus sont les objets généraux d’un immense chapitre des mathématiques, qui
ne se laissent pas enfermer dans une saisie catégorique - si ce n’est fort artificiellement.

Soit dit en passant, il importe d’être conscient des limites de l’approche catégorique, et
surtout de ne pas confondre à cet égard trois «ordres d’universalité» : la notion mathéma-
tique d’«universalité» que la théorie des catégories thématise, l’«universalité» théorique
d’application de ses concepts formels (liée au fait que par nature, cette théorie occulte la
structure interne des objets), et l’«universalité» - ou plutôt la généralité - relativement
limitée, voire précaire, de son importance pratique dans le champ mathématique tout
entier.

Les objets particuliers, quant à eux, sont des sortes de «personnages» mathématiques
qui ont un nom propre. Ils interagissent les uns avec les autres, et avec les objets généraux.
Nous en avons déjà rencontré quelques specimens remarquables au cours de ces exposés :

- le facteur moyennable de type II1 dans la théorie de von Neumann (et plus récem-
ment héros de la logique des interactions de Girard),

- la logique classique (parmi toutes les logiques intuitionnistes),
- le groupe de Galois absolu Gal(Q̄/Q) (objet central de la théorie des nombres),
- le groupe de Galois cosmique (qui agit sur les constantes de toutes les théories

quantiques des champs).
Ces objets particuliers sont d’autant plus fascinants qu’ils sont plus protéiformes et

ubiquitaires, c’est-à-dire qu’ils admettent de nombreuses descriptions différentes et inter-
viennent de façon différente dans plusieurs théories mathématiques. Cette combinaison
de singularité et d’ubiquité enchante bien des mathématiciens, qui considèrent de tels
objets particuliers remarquables comme les joyaux de leur discipline. Leur apparition in-
opinée dans une théorie mathématique qui les ignorait est le présage de développements
exaltants, l’un des catalyseurs de l’unité des mathématiques en acte. L’explication de

4cette terminologie n’est guère satisfaisante. Nous l’employons par défaut, le doublet «géné-
rique/singulier» étant déjà fort employé en mathématique.
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cette apparition passe souvent par le façonnage d’objets mathématiques généraux tout à
fait nouveaux. L’exporation de ce nouvel inconnu peut alors mener, après un âpre travail,
à une classification qui fait apparâıtre de nouveaux objets particuliers.

Cette dialectique entre objets généraux et objets particuliers, qui nous semble être
l’un des moteurs de la recherche mathématique, ne semble pas avoir attiré l’attention des
épistémologues.

2.2 Mode intrinsèque/mode extrinsèque.

La question qu’on se pose maintenant est celle du mode sous lequel tel ou tel objet
mathématique particulier est constitué/envisagé.

Prenons, pour fixer les idées, le cas d’objets géométriques. Traditionnellement, c’est-
à-dire depuis les Anciens jusqu’à Gauss, ils étaient envisagés par rapport à un référent
géométrique : le plan ou bien l’espace euclidien de dimension trois ; l’étude portait donc
sur l’objet plongé.

C’est Gauss qui, dans son étude fondamentale des surfaces, a mis l’accent sur les
propriétés intrinsèques5, c’est-à-dire indépendantes du plongement dans le référent. Cela
suppose déjà une vision claire de l’identité (ou plus correctement, de l’«isomorphie»)
d’objets géométriques plongés différemment dans un référent. On peut y voir l’une des
sources de l’importance prise peu à peu par la notion générale d’isomorphisme, puis de
morphisme.

Toutefois, si c’est la notion intrinsèque qui importe en fin de compte, il ne s’agit pas
pour autant de se débarrasser d’un référent, la donnée même d’un objet mathématique
particulier se faisant très souvent de manière extrinsèque, e.g. via des équations. Le
caractère intrinsèque des objets et propriétés considérés permet alors, selon un libre jeu
de changements de repères, de choisir la description la plus commode selon les besoins.
Exemple. Reprenons le cas, évoqué au début de cet exposé, d’un opérateur linéaire F ∈
L(V ). Bien souvent, ce qui est donné en pratique, ce n’est pas F lui-même, mais le tableau
carré de nombres qu’est sa matrice Λ. L’opérateur F est l’objet abstrait intrinsèque défini
par Λ dans une base donnée, c’est-à-dire une fois V identifié à Cn.

Cette définition est donc de nature extrinsèque : elle dépend du choix d’une base.
Lorsqu’on la change, Λ se change en une matrice du type PΛP−1, et on peut par exemple
tirer profit de cette variation pour se ramener au cas commode d’une matrice triangulaire
(i.e. n’ayant que des 0 au-dessous de la diagonale).

Nous allons maintenant discuter deux modes extrinsèques de se donner un objet ma-
thématique particulier : la présentation et la représentation.

Ces deux modes sont de caractères opposés : la présentation est une description abs-
traite, formelle, symbolique de l’objet considéré, tandis que la représentation vise à une
«concrétisation», une «réalisation», une «incarnation» de cet objet.

2.3 Présentations.

Présenter un objet mathématique, c’est l’exhiber en termes de générateurs et rela-
tions.

5comme me le rappelle F. Nicolas, la dialectique intrinsèque/extrinsèque a été bien thématisée par
A. Lautman [6, II].
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Pour fixer les idées, considérons le cas d’un groupe. Présenter un groupe G, c’est se
donner G par générateurs gi et relations rj , de la manière suivante :

- les gi sont des symboles (sans contenu sémantique spécifié), chacun étant accompagné
d’un autre symbole g−1

i (appelé inverse de gi). On considère l’alphabet (fini ou infini)
formé des gi et des g−1

i ,

- les rj = rj(gi, g
−1
i ) sont certains mots écrits dans cet alphabet,

- les éléments de G sont les mots qu’on peut écrire dans cet alphabet, modulo les
relations rj ,

- la loi de composition de G est donnée par la concaténation des mots mis bout à
bout. L’élément neutre est le mot vide (sans lettre), noté 1G ou simplement 1.

L’expression «modulo les relations rj» demande explication : on entend par là que deux
mots m1 et m2 sont considérés comme définissant le même élément de G si on peut les
obtenir tous deux à partir d’un troisième mot m en effaçant à l’intérieur de m certaines
séquences du type rj , ou gig

−1
i , ou g−1

i gi.

On dit que le groupe G est de présentation finie s’il peut être défini par un nombre
fini de générateurs gi et de relations rj .

Exemple 1. Le groupe libre engendré par g1, . . . , gn est le groupe donné par les générateurs
gi et aucune relation. Si n = 1, on trouve le groupe des entiers Z (muni de l’addition). Si
n ≥ 1, ce groupe s’identifie au groupe fondamental du plan privé de n points x1, . . . xn

(voir exposé 3) : les gi symbolisent des chemins partant et aboutissant à un point-base
fixé x, et tournant une fois autour du point manquant xi dans le sens trigonométrique.

Du point de vue des présentations, les groupes libres jouent le rôle de référents. Dans
ce mode extrinsèque de description, un groupe n’apparâıt pas comme plongé dans un
référent, mais, dualement, comme quotient du référent.

Exemple 2. Le groupe Z/12Z des transpositions du système tempéré est donné par un
générateur g et une relation r = gggggggggggg (g peut représenter la classe de 1 ou
de 5 ou de 7 ou encore de 11 dans Z/12Z, au choix). Une autre présentation de ce
groupe consiste à prendre deux générateurs g1, g2 et trois relations r1 = g1g1g1, r2 =
g1g2g

−1
1 g−1

2 , r3 = g2g2g2g2 (g1 peut représenter la classe de 4 et g2 celle de 3 dans
Z/12Z ; la relation r2 assure la commutativité). On voit donc qu’un groupe donné admet
plusieurs présentations, qu’elles sont extrinsèques, et contiennent pas mal d’arbitraire.

Tout élémentaire et formel que paraisse ce mode de définition d’un groupe, surtout
dans le cas de présentation finie où tout se réduit à concaténer et simplifier des mots sur
un alphabet fini, la présentation par générateurs et relations recèle en fait de redoutables
difficultés, dont le fameux problème des mots de M. Dehn (1911) :

soit G le groupe donné par une présentation finie explicite (gi, rj). Donner un algo-
rithme pour déterminer si deux mots m1 et m2 (sur l’alphabet formé des gi et des g−1

i )
cöıncident modulo les relations rj, autrement dit, s’ils définissent le même élément de G.

Toute la difficulté réside en ce qu’on ne connâıt pas de borne a priori pour la longueur
du mot m dont dériveraient m1 et m2 par simplification, s’ils définissaient le même
élément de G. La réponse au problème de Dehn a été apportée en 1955 par P. Novikov :

pour certains groupes G de présentation finie, le problème des mots est indécidable.
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Ce résultat célèbre est sans doute la première manifestation d’indécidabilité (au sens
usuel d’inexistence de machines de Turing capables de trancher algorithmiquement la
question) en dehors du domaine de la logique et de la théorie des ensembles.

Plus tard, Boone et Higman ont caractérisé les groupes G de présentation finie pour
lesquels le problème des mots est décidable : ce sont ceux qui se plongent dans un
groupe simple qui lui-même se plonge dans un groupe de présentation finie. De là à
savoir construire des groupes où le problème des mots est indécidable, il y a un grand
pas... et une riche théorie. Gardons-nous donc de confondre «indécidable» (qui a un sens
logico-mathématique bien précis) et «inconnaissable» (qui n’en a aucun), et d’interpré-
ter l’indécidabilité comme on ne sait quel retrait du «manteau» mathématique devant le
«toucher de l’esprit».

2.4 Représentations.

Représenter un objet mathématique, c’est le décrire en termes de son action sur
d’autres objets X préalablement connus.

Pour fixer les idées, reprenons le cas d’un groupe. Représenter un groupe G, c’est se
donner G comme groupe de symétries d’un ensemble structuré X. Dans une acception
un peu plus générale, c’est se donner un morphisme6

G → Aut X

du groupe G vers le groupe des automorphismes de X. On parle aussi d’action de G sur
X, et on note g · x l’élément de X qui est le résultat de l’action de l’élément g ∈ G sur
l’élément x ∈ X.
Exemple 1. Tout groupe G agit sur lui-même (de plusieurs façons, en fait), par exemple
par translations à gauche : g · x étant le produit de g et de x dans G. Ce faisant, G
s’incarne comme un groupe de permutations particulières de ses éléments.
Exemple 2. Le programme d’Erlangen de Klein évoqué dans l’exposé précédent (§ 2.2)
fournit de nombreux exemples d’actions de groupes de déplacements sur des figures géo-
métriques. Ce programme est en fait une réflexion de fond sur la notion d’action en
géométrie.

2.5 Représentations linéaires.

Une représentation est d’autant plus efficace que le substrat X de l’action est élémen-
taire ou bien connu. Le cas d’un espace vectoriel est à cet égard prometteur.

On parle de représentation linéaire lorsque X est un espace vectoriel, qu’on note
plutôt V comme d’habitude ; le groupe des automorphismes de V n’est autre que GL(V ).
Lorsque V est de dimension finie, on parle de représentation linéaire de dimension finie.

Une représentation linéaire d’un groupe G dans l’espace vectoriel V , c’est donc un
morphisme de groupes7

ρ : G → GL(V ).

6c’est-à-dire une application qui respecte la composition.
7si G est muni d’une topologie, il est naturel de requérir que ce morphisme soit continu.
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En dimension finie et sous l’hypothèse que ρ injectif8, représenter linéairement un
groupe abstrait G, c’est donc le représenter «concrètement» comme groupe de matrices9.
Une représentation linéaire est dite irréductible si V n’a pas de sous-espace10 stable sous
l’action de G.

Le leitmotiv de la théorie des représentations linéaires des groupes est d’essayer de
«comprendre» un groupe abstrait G à partir de la collection de ses représentations li-
néaires (irréductibles).

Exemple 1 (linéarisation 1). Partant d’une action d’un groupe G sur un ensemble struc-
turé X quelconque, voici comment en déduire une représentation linéaire de G. On prend
pour V l’espace vectoriel F (X) formé des fonctions sur X à valeurs complexes11, et on
fait agir G sur F (X) par la règle suivante qui définit l’action g · f :

(g · f) · x = f(g−1 · x)

(où x désigne un élément de X, f un élément de F (X), g un élément de G).
Par exemple si G agit sur X = G par translation, la représentation linéaire ainsi

obtenue (dans l’espace F (G) des fonctions sur G) s’appelle la représentation régulière de
G et est notée ρreg.
Exemple 2 (linéarisation 2). Reprenons l’exemple 1 du numéro précédent, dans le cas
particulier d’un groupe continu de transformations G (groupe de Lie). Par linéarisation,
l’action de G sur lui-même induit une représentation linéaire de G sur son algèbre de Lie.
Exemple 3. Considérons une équation différentielle linéaire d’ordre n

pn(x)
dny

dxn
+ · · · + p1(x)

dy

dx
+ p0(x) = 0,

les coefficients pi(x) étant des polynômes. Les singularités de cette équation sont les ra-
cines x1, . . . xn du polynôme pn(x). Au voisinage de tout point x distinct des singularités,
les solutions de cette équation différentielle linéaire d’ordre n forment un espace vectoriel
V de dimension n. Mais quand on «suit» une solution y le long d’un chemin partant de
x et aboutissant à x, mais entourant une ou plusieurs singularités, on retombe en général
sur une autre solution de l’équation12. Ainsi, le groupe fondamental du plan privé de
x1, . . . , xn agit sur V : on obtient une représentation du groupe libre à n générateurs,
dite représentation de monodromie.

Pour clore ce paragraphe, mentionnons brièvement deux opérations utiles sur les
représentations linéaires :

- la somme de deux représentations ρ ⊕ ρ′ : G → GL(V ⊕ V ′). L’espace sous-jacent
consiste en les couples formés d’un vecteur de V et d’un vecteur de V ′. L’action de g ∈ G
est donnée par la formule g · (v, v′) = (g · v, g · v′).

- le produit tensoriel13 de deux représentations ρ ⊗ ρ′ : G → GL(V ⊗ V ′). Si les
ei forment une base de V et les e′j une base de V ′, une base de V ⊗ V ′ est formée des
symboles ei⊗e′j . L’action de g ∈ G est donnée par la formule g ·(ei⊗e′j) = (g ·ei)⊗(g ·e′j).

8c’est-à-dire faisant de G un sous-groupe de GL(V ).
9on renvoie au § 1.3 du premier exposé pour la définition de la composée de deux matrices.

10distinct de {0} et de lui-même, bien entendu.
11variante utile en dimension infinie : on peut imposer diverses conditions sur ces fonctions.
12voir le § 4 de l’exposé précédent.
13dont l’intérêt apparâıtra plus bas, § 3.3.
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3 Représentations linéaires des groupes.

3.1 Caractères : la théorie de Frobenius.

La théorie des représentations linéaires des groupes finis est née en 1896, grâce aux
efforts de G. Frobenius pour répondre aux questions de R. Dedekind, qui se heurtait à
des calculs inextricables en théorie de Galois des équations algébriques, dès que le degré
dépassait 4. Le concept fondamental de sa théorie est celui de caractère.

Soit G un groupe à N éléments. On note Fcent(G) le sous-espace de F (G) formé des
fonctions centrales, c’est-à-dire des fonctions f (à valeurs complexes) vérifiant f(gg′) =
f(g′g) pour tout couple (g, g′) d’éléments de G. Le produit scalaire

〈f1, f2〉 =
1
N

∑

g∈G

f1(g)f̄2(g)

fait de Fcent(G) un espace euclidien complexe (voir exposé 1, § 3.1).

Soit maintenant ρ : G → GL(V ) une représentation de dimension finie de G. Son
caractère χρ est la fonction sur G à valeurs complexes définie par la trace :

χρ(g) = tr ρ(g).

Par la propriété fondamentale de la trace, c’est un élément de Fcent(G).
Il s’avère qu’une représentation ρ est complètement déterminée par son caractère χρ.

En outre, cette correspondance de Frobenius entre représentations et caractères jouit des
propriétés remarquables suivantes :

- ρ est irréductible ⇔ χρ est unitaire : 〈χρ, χρ〉 = 1,
- les caractères unitaires forment une base orthonormée de Fcent(G) ; pour toute

élément f ∈ Fcent(G), on a donc la décomposition

f =
∑
〈f, χn〉χn

où χn parcourt les caractères unitaires,
- χρ⊕ρ′ = χρ + χρ′ et χρ⊗ρ′ = χρ.χρ′ ,
- toute représentation ρ de dimension finie de G est somme directe de représentations

irréductibles. La multiplicité avec laquelle la représentation irréductible de caractère χn

apparâıt dans ρ est 〈χρ, χn〉. Cas particulier : la décomposition de la représentation
régulière est : ρreg = ⊕ (dim ρn) ρn où ρn parcourt toutes les représentations irréductibles.

La correspondance de Frobenius permet d’associer à tout groupe fini sa table de
caractères, c’est-à-dire le tableau de nombres complexes dont les entrées sont les valeurs
des caractères unitaires14, et cette table détermine le groupe. Cette correspondance réalise
ainsi l’exploit de ramener en principe la structure du groupe fini abstrait G à de simples

14comme les caractères sont des fonctions centrales, on peut se limiter à considérer leurs valeurs sur des
représentations des classes de conjugaison de G, ce qui permet d’obtenir un tableau carré. Par ailleurs
ces valeurs sont des nombres d’un type bien particulier : comme tout élément g de G vérifie gN = 1G,
toute valeur propre µ de ρ(g) vérifie µN = 1, de sorte que les valeurs de caractères sont toujours des
sommes de racines N -ièmes de l’unité.
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données numériques. Conformément au leimotiv énoncé ci-dessus, des renseignements sur
la table de caractères donnent des renseignements sur le groupe. Par exemple, on montre
facilement qu’un groupe fini G est
- simple15 si et seulement si pour tout g += 1G et pour tout caractère χ += 1, χ(g) += χ(1G).
- commutatif si et seulement si pour tout caractère unitaire χ, χ(1G) = 1.

Bien entendu, pour exploiter à fond cette correspondance, encore faut-il la rendre ex-
plicite, c’est-à-dire savoir calculer la table des caractères. Il existe pour cela un algorithme
simple dû à W. Burnside, l’un des fondateurs de la théorie (voir [6, § 2]).

3.2 Représentations linéaires des groupes compacts et analyse
harmonique. L’apport de Weyl.

Comme nous l’avons rappelé lors du premier exposé (§ 3.2), on définit en analyse de
Fourier le produit scalaire de deux fonctions périodiques f1(t) et f2(t) de période 2π par
la formule

< f1, f2 >=
∫ π

−π
f1(t)f̄2(t)

dt

2π
.

L’espace L2(U(1)) des fonctions f pour lesquelles < f, f > est bien défini est un espace
de Hilbert16. Une base orthonormée est donnée par en = e

√
−1nt (où n est un entier

quelconque), et tout f ∈ L2(U(1)) s’écrit de manière unique

f =
∑

n

< f, en > en.

C’est H. Weyl qui semble avoir remarqué le premier l’analogie (frappante !) entre ces
formules et les formules ci-dessus. Ci-dessus, on avait affaire à un groupe fini G (non
nécessairement commutatif), et à un espace euclidien de dimension finie dont le produit
scalaire était défini par une somme finie. Ici, on a affaire au groupe topologique com-
mutatif (infini) des rotations planes (qu’on peut identifier au cercle unité U(1), chaque
rotation étant épinglée par son angle t ∈] − π, π]), et à un espace de Hilbert dont le
produit scalaire est défini par une intégrale relative à la mesure de probabilité dt

2π sur
U(1) ; les en sont les caractères unitaires de U(1).

En mathématique, toute analogie est une aubaine : le chercheur n’a de cesse de la creu-
ser jusqu’à sa disparition/absorption dans une théorie qui englobe les théories jumelles.
C’est ce qu’a fait Weyl : il a étendu la théorie de Frobenius aux représentations linéaires
de dimension finie des groupes (topologiques) compacts non nécessairement commutatifs,
et créé l’analyse harmonique non commutative.

Le prototype d’un groupe compact est le groupe U(n) des opérateurs unitaires d’un
espace euclidien de dimension n, voir exposé 1, § 3.1.

L’analogue pour un groupe compact G de la décomposition de la représentation ré-
gulière d’un groupe fini, c’est le théorème de Peter-Weyl : L2

cent(G) se décompose selon
les représentations irréductibles de G (il y en a une infinité), chacune intervenant avec
une multiplicité égale à sa dimension (voir par exemple [6]).

15c’est-à-dire n’admet pas de quotient non trivial ; mais, attention, il peut admettre des sous-groupes
non-triviaux, qui ne seront pas normaux.

16c’est-à-dire un espace euclidien complet de dimension infinie.
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3.3 Problème de Tannaka.

Étant donné un groupe compact G, on dispose de la catégorie RepG des représenta-
tions linéaires de dimension finie de G17.

Le leitmotiv général de la théorie des représentations linéaires formulé ci-dessus (§
2.5) incite à poser le problème suivant (problème de Tannaka) :

Peut-on reconstituer G à partir de RepG ?
La réponse est «non... mais presque». Rappelons (ibidem) que RepG est munie d’une

opération interne «produit tensoriel» ⊗. Le théorème de Tannaka dit qu’on peut bel et
bien reconstruire G à partir de la catégorie RepG munie de ⊗.

C’est par le biais d’une vaste généralisation de ce résultat que Grothendieck est par-
venu à l’idée de groupe de Galois motivique, qui a fait une apparition furtive dans l’exposé
précédent (§ 5)18.

3.4 Représentations linéaires et mécanique quantique.

Le produit tensoriel, conçu en algèbre et pour l’algèbre, a fait fortune en mécanique
quantique : l’état de n particules est décrit non par la somme, mais par le produit tenso-
riel de n espaces de Hilbert H. Du principe d’indiscernabilité des particules identiques,
on déduit une action du groupe Sn des permutations sur n objets sur H⊗n. Dès les an-
nées 1926-27, E. Wigner étudiait cette représentation linéaire. À la même époque, Weyl
s’intéressait aux représentations unitaires de dimension infinie du groupe additif des réels
R qui apparaissent en mécanique quantique sous la forme t "→ e

√
−1tH où H est un opé-

rateur hamiltonien (voir exposé 1, § 5.3). La synthèse [9] qu’il a écrite sur la théorie des
représentations et la mécanique quantique, parue en 1928 (soit fort peu après les travaux
fondateurs de Heisenberg et Schrödinger), a eu une influence considérable.

Les théories de jauge, dont les origines remontent d’ailleurs aussi à Weyl, ont par la
suite contribué à renforcer l’importance de la théorie des représentations en physique des
particules. Selon ces théories, c’est grosso modo U(1) qui gouverne l’électro-magnétisme,
U(2) les forces électro-faibles, U(3) les interactions fortes (les quarks qui, avec les leptons,
constituent la matière, furent introduits dans la théorie par Gell-Man et Neeman en 1964
sur la base de considérations sur les représentations de U(3)).

3.5 Représentations linéaires en dimension infinie. La théorie de
von Neumann et l’école de Gelfand.

Les travaux de Weyl ont ouvert une nouvelle ère dans la théorie des représentations :
celle de l’étude des représentations de dimension infinie (de préférence unitaires) des
groupes topologiques G.

17un morphisme de représentations n’étant autre qu’une application linéaire compatible aux actions
de G.

18signalons au passage que l’étude des représentations linéaires du groupe de Galois absolu Gal(Q̄/Q)
(exposé précédent, § 3.1) est l’un des domaines les plus actifs de la théorie des nombres contemporaine.
Pour un groupe compact totalement discontinu comme Gal(Q̄/Q), ce n’est d’ailleurs pas le corps C des
nombres complexes qui est le corps naturel de coefficients de ces représentations galoisiennes, mais ce
sont ce qu’on appelle les corps p-adiques.
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Deux théories, ou deux écoles, en sont nées : la théorie des algèbres d’opérateurs de
von Neumann évoquée dans le premier exposé, et l’école de Gelfand.

Le lien entre représentations linéaires et algèbres d’opérateurs est le suivant. Soit
ρ : G → U(H) une représentation unitaire d’un groupe topologique G dans un espace
de Hilbert H. Alors le commutant de ρ(G) dans L(H) est une algèbre de von Neumann
(voir exposé 1, § 5.1).

I. Gelfand (à qui l’on attribue le slogan «tout problème mathématique est un problème
de représentation») et son école se sont principalement occupés de construire et classer
des représentations. La théorie est extrêmement ramifiée, mais il en émerge un principe
directeur (principe de Kirillov) : les représentations irréductibles de dimension infinie d’un
groupe de Lie correspondent à certaines orbites pour l’action de ce groupe sur (le dual de)
son algèbre de Lie (orbites soumises à une certaine condition de «quantification», dans
l’esprit de la mécanique quantique). Ce principe permet de se ramener à des problèmes
de dimension finie.

4 Représentations linéaires et problèmes de classifi-
cation.

«Tout ce qui peut se ranger lui plaisait.»
G. Cuvier, Eloge de Werner, cité dans [2]

Nous avons déjà dit quelques mots sur le rôle de la classification en mathématique au
§ 5.4 du premier exposé. Ce rôle étant moins connu que dans d’autres sciences, les clas-
sifications paraissent davantage préservées, dans le domaine mathématique, du discrédit
culturel actuel qui bannit presque du champ de la pensée ces avatars scientifiques de la
philatélie, la patience illimitée qu’exige leur exercice étant perçue comme l’antithèse de
l’éclair de génie.

On sait pourtant comment les grands travaux systématiques botaniques et zoolo-
giques, de Linné à Lamark et Cuvier, ont forgé, lors de l’élaboration de schèmes classi-
ficatoires «naturels», la compréhension progressive de la structure visible et de l’orga-
nisation des êtres vivants ; comment la problématique de la classification des éléments
simples, culminant avec la combinatoire du tableau périodique de Mendeleieff des 92, a
contribué à façonner la rationalité chimique (cf. [2, ch. III]), etc...

De même, en mathématique, certaines classifications ont eu une importance concep-
tuelle qui dépasse de bien loin les problèmes de rangement19 ; c’est certainement le cas
de celles que nous allons évoquer ci-dessous.

Les classifications portent sur des objets généraux (au sens du § 2.1), mais font parfois
apparâıtre en fin de compte des objets particuliers tout à fait imprévus ; un tel passage
ne s’obtient pas par une simple méditation dialectique sur les objets généraux considérés.

19il y aurait certes bien des distinctions à faire parmi entre classifications, mais c’est à un philosophe
des sciences qu’il revient d’en parler. Remarquons seulement qu’il ne s’agit dans ce chapitre que du cas
où la classification aboutit à des listes dénombrables. Bien d’autres problèmes de classification mettent
en jeu à la fois des invariants discrets et des modules continus qui forment parfois des objets de même
nature générale que ceux que l’on classifie.
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4.1 Classification des groupes finis simples.

Un exemple emblématique de classification mathématique est celui de la classification
des groupes finis simples. Rappelons encore une fois qu’un groupe fini est dit simple s’il
n’a pas de quotient non trivial, ou ce qui revient au même, s’il n’a pas de sous-groupe
normal non trivial (voir l’exposé 3, § 1.3)20. Tout groupe fini se «dévisse» en groupes
finis simples, qui sont, eux, «indévissables».

Le rêve de Burnside de classifier, en s’appuyant sur la théorie des représentations, les
groupes finis simples a finalement abouti, au bout d’un siècle de travail monumental. On
a la liste complète : trois séries infinies mais élémentaires

- groupes cycliques d’ordre premier,
- groupes alternés21,
- groupes simples de type de Lie22,
plus 26 groupes sporadiques23, dont le plus gros, appelé «Monstre», a

808017424794512875886459904961710757005754368000000000

éléments (il est construit par «représentation», comme groupe de symétries d’une certaine
structure remarquable de dimension 196883).

Les 5 premiers groupes sporadiques ont été découverts par Mathieu en 1860. Il a
fallu plus d’un siècle pour qu’un 6ème n’apparaisse, au cours du travail de classification.
La fin de ce travail avait été annoncée en 1983, mais un «trou» a été repéré dans une
démonstration, trou qui a été «bouché» grâce à un article-rustine de 1300 pages !

La classification est désormais réputée achevée et les experts sont en train de rédiger
une preuve «de seconde génération», plus compacte (environ 5000 pages si tout va bien !)
et plus conceptuelle.

Qu’en est-il de la classification des représentations linéaires des groupes finis simples ?
Autrement dit, que sait-on de leurs tables de caractères ?

Pour les groupes cycliques ou alternés, elles étaient déjà connues de Frobenius. Pour les
groupes sporadiques, on possède des atlas de tables de caractères. La question des tables
de caractères des groupes finis de type de Lie est en revanche ouverte, c’est même l’objet
d’un champ d’investigation vaste et très actif sous la mâıtrise d’œuvre de G. Luzstig.
Celui-ci a proposé une étonnante conjecture reliant les représentations des groupes finis
simples de type de Lie aux représentations des groupes quantiques.

4.2 Classification des groupes de Lie simples.

Entre-temps, Cartan et Killing avaient classifié les groupes de Lie réels et complexes
simples G. La classification se ramène à celle des algèbres de Lie simples LieG. Un peu
comme dans la théorie de Frobenius pour les groupes finis, mais de manière beaucoup
plus sophistiquée, apparâıt de la géométrie euclidienne.

20la notion, sinon le qualificatif, est due à Galois.
21c’est-à-dire groupes de permutations de n lettres composés d’un nombre impair d’échanges de deux

lettres. C’est Galois qui a montré que ce sont des groupes simples dès que n ≥ 5
22ce sont, grosso modo, des groupes de matrices à coefficients dans un corps fini.
23ce qualificatif est dû à Burnside.

71



Yves André

En fait, à toute algèbre de Lie complexe simple24 (ou somme directe de telles) est
associée un petit bijou de géométrie euclidienne réelle appelé système de racines, qui
consiste en un ensemble fini Φ de vecteurs qui engendrent l’espace et qui vérifient les 3
propriétés suivantes :

- pour tout α ∈ Φ, les seuls éléments de Φ proportionnels à α sont α et −α,
- pour tout α ∈ Φ, Φ est stable par réflexion sα par rapport à l’hyperplan perpendi-

culaire à α,
- pour tous α, β ∈ Φ, la projection orthogonale de β sur la droite menée par α est un

multiple demi-entier de α.
Le groupe de Weyl est le groupe fini de symétries de Φ engendré par les réflexions sα.

Fig. 4.1. Systèmes de racines en dimension 2.

Il reste à classifier les systèmes de racines : c’est affaire de combinatoire et de géométrie
euclidienne élémentaire, quoique subtile. Ceux qui sont indécomposables (ce sont ceux qui
correspondent effectivement à des algèbres de Lie simples) se laissent épingler, chacun,
par un diagramme de Dynkin, dont voici la liste (on a pu dire que ces diagrammes de
Dynkin sont des sortes de «lutins qui infestent les mathématiques»)25 :

An : ◦ − ◦ − · · · − ◦ − ◦

Bn : ◦ − ◦ − · · · − ◦ ⇒ ◦

Cn : ◦ − ◦ − · · · − ◦ ⇐ ◦

Dn : ◦ − ◦ − · · · − ◦ <
◦
◦

E6 :
◦
|

◦ − ◦− ◦ − ◦ −◦

24sic ! Complexe veut dire ici à coeffients dans le corps des nombres complexes, simple veut dire sans
quotient non-trivial.

25leur signification est en gros la suivante : les sommets - ou petits cercles - figurent les racines simples,
desquelles toutes les racines se déduisent par combinaison linéaire à coefficients tous positifs ou tous
négatifs ; les arêtes figurent l’angle entre deux racines simples non perpendiculaires - simple arête si
l’angle est de 120̊ etc...
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E7 :
◦
|

◦ − ◦− ◦ − ◦ − ◦ −◦

E8 :
◦
|

◦ − ◦− ◦ − ◦ − ◦ − ◦ −◦
F4 : ◦ − ◦ ⇒ ◦ − ◦

G2 : ◦ ≡ ◦.

En conclusion, il y a 4 familles infinies (An, Bn, Cn, Dn) d’algèbres de Lie complexes
simples26, plus 5 exceptionnelles (E6, E7, E8, F4, G2).

Le problème de la classification des représentations des groupes de Lie simples a
été résolu par Weyl pour l’essentiel, qui a donné une formule fondamentale pour les
caractères. Il y a une relation entre les représentations de chacun de ces groupes continus
et les représentations du groupe de Weyl (fini) correspondant.

4.3 Classification des représentations linéaires et indécidabilité.

Reprenons la notion de représentation linéaire dans son acception générale. On s’est
attaché ci-dessus au cas des groupes (abstraits ou topologiques), mais on peut représenter
linéairement d’autres structures. La situation la plus générale, semble-t-il, est celle des
carquois.

Les carquois sont des graphes (en général finis) dont les arêtes (qui peuvent être
multiples) sont orientées. Signalons en passant leur intervention récente dans la théorie
des gestes musicaux de M. Andreatta et G. Mazzola [1].

Une représentation linéaire d’un carquois Q, c’est la donnée, pour tout sommet x de
Q, d’un espace vectoriel Vx (disons de dimension finie pour fixer les idées), et pour toute
arête a liant les sommets x et y d’une application linéaire Fa de Vx dans Vy.

Comme pour les représentations de groupes, il y a une notion naturelle de somme,
et une représentation est dite indécomposable si elle ne se laisse pas décomposer (non
trivialement) en somme.

La question de la classification des représentations linéaires des carquois mène alors à
une trichotomie résumée dans le merveilleux théorème de Gabriel, Nazarova et al. (voir
[3, 4.4]) où resurgissent, tels Scarbo, les diagrammes de Dynkin :

THEOREME : Soit Q un carquois. On a la trichotomie suivante :
1) Q n’a qu’un nombre fini de représentations indécomposables si et seulement si c’est

un diagramme de Dynkin.
2) Q a une infinité de représentations indécomposables classifiables algébriquement

(en un sens précis que nous n’éluciderons pas ici) si et seulement si c’est un diagramme
de Dynkin étendu27.

26les groupes associés sont issus de la géométrie euclidienne réelle ou complexe, ou de la géométrie
symplectique.

27obtenu par adjonction d’un sommet à un diagramme de Dynkin selon une règle simple que nous ne
préciserons pas ici.
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3) En dehors de ces deux cas, la «théorie» des représentations de Q est indécidable.

En fait, la démonstration de l’indécidabilité dans le cas 3) se fait en codant le problème
des mots de Dehn dans la théorie des représentations de Q !

Exemple (Gelfand-Ponomarev). Soit Qn le carquois ayant n sommets x1, . . . , xn liés
par une arête orientée vers un sommet central x0. La théorie des représentations de
Qn équivaut à celle des systèmes de n sous-espaces V1, . . . Vn d’un espace vectoriel V0,
considéré à isomorphisms près. Il s’avère que Qn est de type 1) (fini) pour n ≤ 3, de
type 2) (modéré) pour n = 4, de type 3) (sauvage) pour n > 4 : il est donc impossible
de classifier, à isomorphisme près, les systèmes de 5 sous-espaces d’un espace vectoriel.

********************
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[5] - A. Kirillov, Éléments de la Théorie des Représentations, (traduction française
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