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Abstract

Nous proposons une définition algébrique générale de l’homo-
logie et la cohomologie qui sépare complètement le concept et
les moyens de calcul, et qui est valide sans aucune hypothèse
d’abélianité et de complétude. Nous montrons que dans le cas où
le cadre de calcul est abélien complet et cocomplet, l’homologie
en question redonne celle décrite par la définition abélienne usuelle.

In [7] we gave a non abelian or anabelian definition of classical satellites,
related to exact squares [6]. Our aim here is to do the same for homology,
and to provide a natural algebraic anabelian definition of homology and
cohomology which reduces to the classical notion in the abelian case.

1 A first anabelian definition

At first, let us recall the well known process of Kan’extensions. For this
notion see [8]. For the notations see [9].

If K : A → B is a functor and if V is a category, the left and right
adjoints to functor V K : V B → V A : G 7→ G ◦K are denoted (if they
exist) by LanK and RanK (omitting the specification of V ) and are
named left and right Kan extensions along K. So by definition we have
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the natural bijections

Nat(LanK(F ), G) ∼= Nat(F, G ◦K), < lan >

Nat(G ◦K, F ) ∼= Nat(G, RanK(F )), < ran >

and of course as left and right adjoints LanK and RanK are, respectively,
right and left exact. But LanK is not necessarily left exact, and RanK is
not necessarily right exact. So it could be useful to estimate how much
LanK is not compatible with kernels and products, or how much RanK

is not compatible with cokernel and sums: it will be specifically the job
of homology and cohomology, as shown in our definition 1 below (and
as it is of course clear in the abelian case).

A

=⇒

K //

F
��

B

LanKFxx
V

A

⇐=

K //

F
��

B

RanKFxx
V

If the given colimits or limits exist (for a given F : A → V and for
each object B of B) we know that :

LanK(F )(B) = colim(K/B
pB→ A

F→ V ), [lan]

RanK(F )(B) = lim(B/K
qB→ A

F→ V ), [ran]

where the canonical functor pB (resp. qB) is the K-co-shape (resp. the
K-shape) of B, from the category K/B (resp. B/K) of objects of A
over (resp. under) B toward the category A. But the definition of LanK

or RanK does not suppose that these limits exists, and a fortiori that
these formulas make sense.

And we need also the functor KV : AV → BV : Q 7→ K ◦Q.

Now, in order to introduce our first definition of homology, for ob-
jects of X with values in C, our basic datum [J ; L, R] consists of three
functors.

The first one J : M → X describes the ‘internal modeling datum” in X.
An object M of M is considered as a typical elementary or basic model
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for objects of X, and each object X of X could be think as a glueing
of such basic datum: an arrow α : J(M) → X (resp. γ : X → J(M))
in X is an elementary aspect (resp. co-aspect) of X. A classical case is
X = CW − complexes, with M the full subcategory of the ∆n.

The two others L, R : P → C describe the “internal computing datum”
in C, and we think of (L, R) as an abstract calculus of presentation of
objects of C: if P is an object of P , we think of L(P ) as an abstract
quotient of P by R(P ). As explained in section 2, the classical abelian
case is the one in which C = Ab and P = EXAn(Ab), etc., but clearly
a lot of anabelian cases could be considerated naturally.

Definition 1 — The homology and the cohomology with respect to the
basic datum [J ; L, R] are the two functors H?[J ; L, R] and H?[J ; L, R]
from X × CM to C which are given for X ∈ X and F : M → C by :

H?[J ; L, R](X,F ) = RanLM (LanJ ◦RM)(F )(X),

M

=⇒

J //

F
��

X

LanJFxx
P L //

R
��

C

C

PM LM
//

RM

��

⇐=

CM

Ran
LM (LanJ◦RM )

��
CM

LanJ

// CX

X × CM

H?

��
C

H?[J ; L, R](X, F ) = LanRM (RanJ ◦ LM)(F )(X),

M

⇐=

J //

F
��

X

RanJFxx
P R //

L
��

C

C

PM RM
//

LM

��

=⇒

CM

Lan
RM (RanJ◦LM )

��
CM

RanJ

// CX

X × CM

H?

��
C

Observations — 1 — In this definition the formulas for H? and H?

provide, with respect to the calculus (L, R), an estimation at the level
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of X and from the point of view of F of the lack of left exactness of
LanJ and of the lack of right exactness of RanJ . In this way we get an
estimation, expressed by an object of C, of how much X is far from M .

2 — In this definition we saw neither additivity or abelianity nor exis-
tence of projective or injective resolution. So we did a step on the way
to be free of contingent computations. Nevertheless the concept is not
lost, because we are able to recover classical abelian things (section 2).
But in order to be fully free of computation we have to discharge the
definition 1 of the specifications of computing Ran and Lan (section 3).

2 Recovering the abelian case

Let us consider now the case where C is the category Ab of abelian
groups, where P is the category EXAn(Ab) of exact sequences of length
n + 2 in Ab

E = (0← An+2 ← An+1 ← ...A2 ← A1 ← 0),

with R(E) = A1 and L(E) = An+2.

In [7] it is proved that this datum EXAn is obtained (up to isomorphism,
but is it enough) by composition (by pullback) of the span (L, R) for
EXA1 with itself n times, and — that is the point — the used pullbacks
are exact squares [6], a fact which implies that the n-th satellite is the
nth-iteration of the first.

In this case (EXAn(Ab))M ∼= EXAn(AbM), and we can make use
of [11] and of the universal description of satellites given in [7] (which
unified as special cases the descriptions of [3], [5] and [10]) in order to
say that the functors RanLM (LanJ ◦RM) and LanRM (RanJ ◦ LM) are,
respectively, the left (resp. right) satellites of order n of LanJ (resp. of
RanJ).

But, as LanJ (resp. RanJ) is right (resp. left) exact, these satellites
are also the corresponding derived functors Ln(LanJ) and Rn(RanJ)
(see [4] for the definition of Ln and Rn), expressing how far from being
compatible with kernels (resp. cokernels) is LanJ (resp. is RanJ).
At this point, following [2], because of the exactness of the evaluation
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functor EX : CX → C, with JX : J/X → {∗} and XJ : X/J → {∗}, we
have :

H?[J ; L, R](X, F ) = H?[JX ; L, R](∗, F ◦ pX),

H?[J ; L, R](X,F ) = H?[XJ ; L, R](∗, F ◦ qX).

So, H? (resp. H?) is a J-co-shape (resp. a J-shape) invariant of X.

In [2] it is also proved that in fact

Ln(LanJ)(F )(X) ∼= HJ
n (X, F ),

where HJ
n (X, F ) = Ker(dn)/Im(dn+1) is the homology, introduced in

[1], of the chain complex of abelian groups

...→ C2(X, F )
d2→ C1(X, F )

d1→ C0[X, F )
d0→ 0,

where
Cn(X, F ) = Σ

Mn
mn→Mn−1...M1

m0→M0;J(M0)
k→X

F (Mn),

dn = Σ0≤i≤n(−1)isi
n,

with
s0
1 : (FM1)(m0;k)

Id→ (FM1)(M1;k.J(m0)),

s1
1 : (FM1)(m0;k)

F (m0)→ (FM0)(M0;k),

and so on.

We note that HJ
0 (X,F ) = coker(d1) = LanJ(F )(X).

And the dual of all that works for cohomology.

Finally in [1] it is shown that the various classical abelian homologies
and cohomologies are examples of the HJ

n (X, F ) and the Hn
J (X, F ), and

in this way we get in conclusion :

Theorem 1 In the classical abelian cases the definition 1 in section 1
determines the classical theories of homology and cohomology.

265



3 Homology and cohomology as limits and

colimits, and the second definition

1 . For a basic datum [J ; L, R] as in definition 1, with a fixed functor
F : M → C, we consider as object a datum like

α = [F ; A, a; B, b]

with A : M → P , a : F ◦IdM ⇒ L◦A, B : X → C, and b : R◦A⇒ B◦J ,
as in the diagram

M

a
�$

AA
AA

AA
A

AA
AA

AA
A

F
��

M

A
��

J // X

B
��

C P
b

;C~~~~~~~

~~~~~~~

L
oo

R
// C

We define a morphism θ : α→ α′ as a datum θ = (m, n) with

m : A→ A′, a′ = (Lm)a, n : B → B′, (nJ)b = b′(Rm).

So we get a category of “homology” H?[J ; L, R]F , with a forgetful func-
tor toward CX :

Λ?[J ; L, R] : H?[J ; L, R]F → CX : α 7→ B = Λ?(α).

2. Dually, to describe a category of “cohomology” H?[J ; L, R]F , with a
forgetful functor toward CX :

Λ?[J ; L, R] : H?[J ; L, R]F → CX : α 7→ B = Λ?(α),

we consider an object like

α = [F ; A, a; B, b]

with A : M → P , a : R◦A⇒ F ◦IdM , B : X → C, and b : B◦J ⇒ L◦A,
as in the diagram

M

F
��

M

A
��

J // X
b

{� ~~
~~

~~
~

~~
~~

~~
~

B
��

C P

a
\dAAAAAAA

AAAAAAA

R
oo

L
// C
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Theorem 2 If we assume the convenient hypothesis of completeness
and cocompleteness, we have

H?[J ; L, R](−, F ) = lim
(
Λ?[J ; L, R] : H?[J ; L, R]F → CX

)
,

H?[J ; L, R](−, F ) = colim
(
Λ?[J ; L, R] : H?[J ; L, R]F → CX

)
.

For homology H? we get, following definition 1 and formula [ran],

H?(−, F ) = H?[J ; L, R](−, F ) = lim(a:F→LM (A);A)

(
LanJ(RM(A)

)
,

i.e. H?(−, F ) = lima:F→L◦A
(
LanJ(R ◦ A)

)
. But, by < lan > for every

b : R◦A→ B ◦J , we have a factorization b = (βJ)η (with the universal
η : R ◦A→ LanJ(R ◦A) ◦ J), and LanJ(R ◦A) dominates B in such a
way that lima:F→L◦A

(
LanJ(R ◦ A)

)
= lima:F→L◦A;b:R◦A→B◦J

(
B

)
, hence

the formula for H?.

A completely dual argument works for H?. In fact, in this presentation

it is clear that H?[J ; L, R](−, F ) =
(
H?[J

op; Rop, Lop](−, Fop)
)op

.

Now we are ready for our second definition

Definition 2 — Given as basic datum a couple [I, J ; L, R] of spans

Y MIoo J // X , D PLoo R // C ,

the homology with respect to [I, J ; L, R] with coefficients in the functor
F : Y → D is the functor H?(−, F ) = H?[I, J ; L, R](−, F ) : X → C,
which is the projective limit

H?[I, J ; L, R](−, F ) = lim
(
Λ?[I, J ; L, R] : H?[I, J ; L, R]F → CX

)
,

of the functor Λ?[I, J ; L, R] : H?[I, J ; L, R]F → CX : α 7→ B = Λ?(α),
where H?[I, J ; L, R]F is the category with objects the α = [F ; A, a; B, b]
with A : M → P , a : F ◦ I ⇒ L◦A, B : X → C, and b : R ◦A⇒ B ◦J ,
as in the diagram

Y

a
�#

@@
@@

@@
@

@@
@@

@@
@

F
��

MIoo

A
��

J // X

B
��

D P
b

;C~~~~~~~

~~~~~~~

L
oo

R
// C
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and with morphisms θ : α → α′ a datum θ = (m,n) with m : A → A′,
a′ = (Lm)a, n : B → B′, (nJ)b = b′(Rm).

Clearly the dual definition works for cohomology.

Observations — 1 — The definition is given as a limit but does not
need limits inside its expression.

2 — The fact of taking the limit becomes of secondary importance,
the point beeing the description of the category H?[I, J ; L, R]F and the
functor Λ?[I, J ; L, R] : H?[I, J ; L, R]F → CX .

3 — The point is to construct a comparison between two spans, the first
one thought as an analysis of spaces living in X, the second one thought
as a calculus in C. But at this level of abstraction the distinction
between spaces and calculus disappeared.

4 — Of course, because of theorem 1 and theorem 2, this definition
2 again agrees with the classic descriptions of abelian homology and
cohomology.
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