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Abstract

The following notes originate from a course on distributors given by the
author in June 2000 at TU Darmstadt on invitation of Thomas Streicher
who has also prepared this introductory paper based on his lecture notes for
which the author wants to express his gratitude.
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It should be emphasised here that the aim of these notes is not to expand
most recent research results but rather to give a well–motivated and easy to
grasp introduction to the concept of distributors and its many applications
justifying the title “Distributors at Work”.

1 Motivation

Analogies are useful in mathematics for generalising a class of well–known
examples to a wider class of equally or even more useful structures. Category
Theory is particularly well suited for this purpose which is no wonder as it
has been developed for precisely this purpose. Well known examples of this
method of “generalisation by analogy via category theory” are e.g.

• monoidal categories and enriched categories as generalisations of abelian
categories, in particular categories of modules

• toposes as generalisations of the category of sets which via their internal
language can be viewed as generalised universes of sets

• arbitrary Grothendieck fibrations as generalisations of the ‘family fibra-
tion’ Fam(C) over Set allowing for a development of category theory
over an arbitrary base (topos).

In the following we concentrate on a generalisation of relations between
sets to “relations between (small) categories” called distributors.

If A and B are sets then relations from A to B correspond to maps
A→ P(B). If A and B are posets then relations from A to B may be defined
as monotone maps A→ ↓B where ↓B is the poset of downward closed subsets
of B ordered by set inclusion. Notice that this notion of relation between
posets generalises the ordinary notion of relation between sets as for a set B
considered as a discrete poset we have P(B) = ↓B. Exploiting the cartesian
closed nature of the category of posets and monotone maps we may define a
relation from A to B simply as a monotone map Bop×A→ 2 where 2 is the
2 element lattice.1 Such maps will be called “distributors between posets”.

1Notice that monotone maps Bop × A → 2 correspond to relations R ⊆ B × A such
that

x ≤ x′ ∧R(y, x) ∧ y′ ≤ y ⇒ R(y′, x′) .
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Bearing in mind that posets are categories enriched over 2 and ordinary
categories are “categories enriched over Set” we may define – by analogy
with the case of posets – a relation between small categories A and B as
a functor φ : Bop × A → Set or, equivalently, as a functor A → B̂ where
B̂ = SetBop

, the category of (Set–valued) presheaves on B which generalises
↓B = 2Bop

for posets B in an obvious way. A functor φ : Bop×A→ Set will
be called a distributor from A to B and we write φ : A +- B to express
that φ is a distributor from A to B.

Whereas the categories of relations between sets and posets arise as Kleisli
categories for monads P and ↓ on Set and Poset, respectively, from which
it is obvious how to compose morphisms, this is not the case anymore for
distributors between small categories as categories of presheaves even over a
small category are themselves not small anymore. Instead we will describe
composition of distributors between small categories via (left) Kan extension
along Yoneda functors which we will discuss en detail in the next section.
For distributors φ : A +- B and ψ : B +- C their composition ψφ is
given by LBψ ◦ φ where LBψ is the left Kan extension of ψ : B → Ĉ along
the Yoneda functor YB : B→ B̂.

Notice that this definition of composition of distributors is in analogy with
the definition of composition for relations and distributors between posets.
If φ : A → P(B) and ψ : B → P(C) then ψφ = L(ψ) ◦ φ where L(ψ) :
P(B) → P(C) is the unique cocontinuous2 function g from P(B) to P(C)
with g ◦ {·} = ψ. Similarly for composition of distributors between posets

(just replace P by ↓). Now ψφ = LBψ ◦φ is a generalisation as LB(ψ) : B̂→
Ĉ is the unique (up to isomorphism) cocontinuous extension of ψ along YB.

2 Kan Extensions

We first introduce the key concept of left Kan extension.

Definition 2.1 Let F : A → X and G : A → Y be functors. The functor
F has a left Kan extension along G iff there is a functor K : Y → X
together with a natural transformation η : F ⇒ KG such that for all functors
K ′ : Y → X and natural transformations ϕ : F ⇒ K ′G there is a unique

2Here “cocontinuous” means preservation of colimits. This makes sense for functors in
general. In the particular context it means that g preserves all suprema. There is the dual
notion “continuous” meaning preservation of limits.
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natural transformation ψ : K ⇒ K ′ with ϕ = ψG◦η, i.e. making the diagram

F ===
η
⇒ KG

K ′G

ψG�
wwww======ϕ ⇒

commute. ♦

Notice that left Kan extensions along F exist for all G : A → Y iff
XG : XY → XA has a left adjoint LG, i.e.

Nat(LG(F ), K) ∼= Nat(F,KG)

naturally in F and K. Of course, one may also consider the dual concept of
right Kan extension XG a RG satisfying

Nat(KG,F ) ∼= Nat(K,RG(F ))

naturally in in F and K. We leave it as an exercise to state the universal
properties of RG(F ) analogous to Definition 2.1. Notice, however, that right
Kan extensions will not play any prominent role in the development of the
theory of distributors in these notes.

Notation In the following small categories will be denoted by A,B,C . . .
whereas arbitrary, possibly big categories will be denoted by X,Y,Z . . . .

Next we recall a theorem of Kan guaranteeing the existence of left Kan
extensions under very mild assumptions.

Theorem 2.1 Let F : A → X and G : A → Y be functors. If A is small
and X is cocomplete then there exists a Kan extension LG(F ) of F along G.
Moreover, if G is full and faithful then LG(F ) ◦G ∼= F .

Proof. For Y ∈ Y define LG(Y ) as ColimG(A)→Y F (A), the colimit of

G↓Y
∂0 - A

F
- X ,

and ηA as the component of the colimiting diagram at (A, idGA).
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If G is full and faithful then G↓G(A) ' A↓A and, therefore, ηA is an
isomorphism. �

Of course, LG preserves all colimits as it is a left adjoint. However, in
general LG(F ) does not have any particular good preservation properties as
can be seen when considering Kan extension along idA where LidA

(F ) is as
bad (or good) as F itself because LidA

(F ) ∼= F .
However, much more can be said for the special case of Kan extension

along Yoneda functors. We will write LA as an abbreviation for LYA
, i.e. left

Kan extension along the Yoneda functor YA : A→ Â.
First let us recall some basic facts about presheaf toposes. For P ∈ Â its

category of elements Elts(P ) is defined as follows: objects are pairs (A, a)
with a ∈ P (A), morphisms from (A, a) to (B, b) are morphisms f : A → B
in A with a = P (f)(b) and composition is inherited from A. Notice that by
the Yoneda lemma Elts(P ) is isomorphic to YA↓P . The colimit of

YA↓P
∂0 - A

YA - Â

is P where the component of the colimiting cone at (A, a : YA(A)→P ) is
a. Thus, every presheaf is canonically the colimit of its approximating repre-
sentable objects.

Theorem 2.2 Let A be small and X be cocomplete. Then for every functor
F : A→ X its left Kan extension LA(F ) = LYA

(F ) is cocontinuous and has a
right adjoint, namely the exponential transpose of the functor X(F (−1),−2) :
Aop ×X→ Set.

Proof. The Kan extension LA(F ) preserves colimits due to its construction
via colimits (as explained in the proof of Theorem 2.1) and the fact that

every P ∈ Â is canonically the colimit of its approximating representable
presheaves.

Thus, by the Adjoint Functor Theorem LA(F ) has a right adjoint R which
must look as follows

R(X)(I) ∼= Â(YA(I), R(X)) ∼= X(LA(F )(YA(I)), X) ∼= X(F (I), X)

where the last isomorphism is induced by the isomorphism LA(F ) ◦ YA
∼= F

following from Theorem 2.1 because YA is full and faithful. �
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Historical Note. The previous theorem was known in special cases already
before D. Kan proved it. Actually, his motivation for the theorem was the
following well–known situation.

Consider the topos ∆̂ of simplicial sets where ∆ is the category of finite
nonempty ordinals which embeds into the category Sp of topological spaces
via a functor F : ∆ → Sp sending 1 to a point, 2 to a line segment, 3 to a
triangle etc. Singular homology for spaces is defined via the functor

Sing : Sp→ ∆̂ : X 7→ [n 7→ Sp(F (n), X)]

and it was observed by Milnor that Sing has a left adjoint Real = L∆(F )
providing geometric realisation of simplicial complexes.

In order to understand more abstractly situations like these D. Kan in-
troduced the concepts of adjoint functors and Kan extension.

Next we show how Kan extensions along functors between small categories
can be reduced to Kan extensions along Yoneda.

For a functor G : A→ Y with A small and Y locally small let Go : Y →
Â be the exponential transpose of Y(G(−1),−2) : Aop ×Y → Set sending

Y to Y(G(−), Y ) ∈ Â. Let η : YA ⇒ GoG be the natural transform with

(ηA)A′ : A(A′, A)→ Y(GA′, GA) : u 7→ G(u)

for A,A′ ∈ A. In the next section we will see that if Y is a small category
then Go is the distributor right adjoint to YB ◦ G with η being the unit of
the adjunction.

Theorem 2.3 Let A be a small category and G : A → Y be a functor.
Then for every functor F : A→ X with X cocomplete the left Kan extension
LG(F ) is given by LA(F ) ◦ Go and its universal property is exhibited by the
natural transformation LA(F )η as shown in the diagram

Y

A

η⇒
YA

-

G
-

Â

Go

?

X

LA(F )
?

F
-
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Proof. Notice that Elts(Go(Y )) = Elts(Y(G(−), Y )) is canonically iso-
morphic to G↓Y from which it follows that LA(F )(Go(B)) = LG(F )(B).
The universal property of LA(F )η follows from the fact that LA(F )(ηA) is
the leg of the colimiting cone for

G↓G(A)
∂0 - A

F
- X

at (A, idG(A)). �

Notice that Theorem 2.3 may be used to prove some preservation property
of Kan extensions LG(F ) as if Go and LA(F ) have the preservation property
under consideration then so has their composite LG(F ) = LA(F ) ◦G0.

Another consequence of Theorem 2.3 is the following.

Corollary 2.4 Let G : A → Y with A small. Then G is full and faithful
iff η : YA ⇒ LG(YA) ◦G is an isomorphism. Thus, G is full and faithful iff
η : F ⇒ LG(F ) ◦ G is canonically isomorphic for all F : A → X with X
cocomplete.

Proof. As LA(YA) is (isomorphic to) the identity on Â from Theorem 2.3
we get that LG(YA) = Go and, therefore, that η : YA ⇒ LG(YA) ◦ G is an
isomorphism iff η : YA ⇒ G0G is an isomorphism which in turn is equivalent
to G being full and faithful. Thus, the functor G is full and faithful if
η : F ⇒ LG(F )◦G is an isomorphism for all F : A→ X with X cocomplete.
The reverse implication is immediate by Theorem 2.1. �

3 Distributors

In this section we define the bicategory Dist of distributors between small
categories and study its basic properties.

Definition 3.1 Let A and B be small categories. A distributor from A to
B is a functor φ : Bop ×A→ Set. We write φ : A +- B to indicate that
φ is a distributor from A to B. ♦

Notice that there is a natural 1–1–correspondence between distributors from
A to B and functors A→ B̂ as Cat is cartesian closed.3 We write φ̂ for the
exponential transpose of a distributor φ.

3We have a slight preference for the first view as it is slightly more general in the sense
that it does not require the existence of B̂. For example the representation of relations
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Let φ : A +- B be a distributor between small categories and x ∈
φ(B,A). If a : A → A′ in A then we write ax for φ(B, a)(x) ∈ φ(B,A′)
and if b : B′ → B in B then we write xb for φ(b, A)(x) ∈ φ(B′, A). Thus,
distributors can most naturally be considered as families of sets on which
simultaneously A acts from the left and B acts from the right and these two
actions commute with each other, i.e. are related by the law

(ax)b = a(xb)

for x ∈ φ(B,A), a : A→ A′ and b : B′ → B.
Notice that distributors are related to ordinary bimodules in the following

way. Rings can be considered as categories with one object enriched over
abelian groups. Enriched distributors from A to B then are nothing else
but an abelian group M on which A acts from the left and B acts from
the right and these actions commute with each other. This analogy between
distributors and bimodules will play a guiding role subsequently.

Let φ : A +- B and ψ : B +- C be distributors. Recall from the
introduction that we intend to compose distributors in the following way

ψφ = LB(ψ̂) ◦ φ

i.e. as φ followed by the left Kan extension of ψ̂ along the Yoneda functor
YB. Thus, according to Theorem 2.1 (ψφ)(C,A) is given by the colimit of
the diagram

Elts(φ(−, A))
∂0- B

ψ(C,−)
- Set

as colimits in Ĉ are computed pointwise. Thus, we have

(ψφ)(C,A) =
( ∐

B∈B

ψ(C,B)× φ(B,A)
)

/∼

where ∼ is the least equivalence relation with (y′, x′) ∼ (y, x) if there is a
morphism b in B with

y′ = by and x′b = x

from A to B as functions B × A → 2 is simpler than the representation as functions
A → P(B) as the former does not require the existence of powersets which in general do
not exist within e.g. the category of countable sets (unless B is finite) whereas functions
B ×A→ 2 do stay within countable sets.
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as indicated in the diagram

B

C
....
....
....
....
...y
-

A

...................

x

-

B′

b

?....
....
....
....
..

x
′

-
..................y ′ -

where the dotted arrows stand for “fake arrows”, i.e. elements of φ(B,A),
φ(B′, A), ψ(C,B) and ψ(C,B′), respectively.

Thus, (ψφ)(C,A) consists of the connected components of the comma
category of the cospan

Elts(ψ(C,−))

∫
ψ(C,−)

- B �

∫
φ(−, A)

Elts(φ(−, A))

where
∫
φ(−, A) and

∫
ψ(C,−) are the fibration and cofibration obtained

from φ(−, A) and ψ(C,−), respectively, via the Grothendieck construction.
As composition of distributors requires to have connected components avail-
able in order to develop the basic theory of distributors in other universes U
than Set such U not only have to have finite limits but also well–behaved
coequalisers4, i.e. U has to be exact.

Definition 3.2 The bicategory Dist of distributors is defined as follows.
The 0–cells of Dist are the small categories. The 1–cells from A to B are

the distributors from A to B. A 2–cell between distributors φ, φ′ : A +- B
is a natural transformation from φ to φ′.

If φ : A +- B and ψ : B +- C are distributors then their composite
ψφ : A +- C is defined (as discussed already above) as follows

(ψφ)(C,A) =
( ∐

B∈B

ψ(C,B)× φ(B,A)
)

/∼

4Let C be a category with pullbacks. Then for internal graphs in C the connected
components functor Π0 is defined as the left adjoint to the inclusion disc : C→ Graph(C)
sending C ∈ C to the span (idC , idC). Obviously, C admits a Π0 if and only if C has co-
equalizers. Of course, the connected components of an internal category are the connected
components of its underlying graph.
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where ∼ is the least equivalence relation with (y′, x′) ∼ (y, x) if there is a
morphism b in B with y′ = by and x′b = x. Composition of distributors
is not associative on the nose but, rather, associativity only holds up to the
isomorphism

α : (θψ)φ
∼

=⇒ θ(ψφ)

sending [((z, y), x)]∼ to [(z, (y, x))]∼. For A the identity 1–cell idA : A +- A
is given by HomA(−,−) : Aop ×A → Set. They are left and right neutral
only up to the isomorphisms

λ : φid
∼

=⇒ φ ρ : idφ
∼

=⇒ φ

sending [(x, f)] and [(f, x)] to fx and xf , respectively. ♦

The verification that these data satisfy the laws of a bicategory is tedious
but straightforward. In a sense it is only the non–associativity of cartesian
product (in Set) that renders composition of distributors not strictly asso-
ciative.

However, if we define composition of distributors via left Kan extension
then there is a nice conceptual proof of associativity. Let φ : A +- B,
ψ : B +- C and θ : C +- D be distributors then

(θψ)φ = LB(LC(θ̂) ◦ ψ) ◦ φ ∼= LC(θ̂) ◦ LB(ψ̂) ◦ φ = θ(ψφ)

as it already holds that

LB(LC(θ̂) ◦ ψ) ∼= LC(θ̂) ◦ LB(ψ̂)

as both functors are cocontinuous and isomorphic when restricted along YB

as LB(LC(θ̂) ◦ ψ) ◦ YB
∼= LC(θ̂) ◦ ψ ∼= LC(θ̂) ◦ LB(ψ) ◦ YB.

4 Tensor and Hom

Composing distributors via Kan extension is a fruitful point of view as it
suggests the following notion of “tensor product”.

Definition 4.1 Let φ : A +- B be a distributor and F : B → X be
a functor with X a cocomplete category. Then their tensor product Fφ is
defined as LB(F ) ◦ φ̂. ♦
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It is easily checked that the tensor product is associative up to isomor-
phism in the sense that

F (φψ) ∼= (Fφ)ψ (GF )φ ∼= G(Fφ)

for distributors ψ and cocontinuous functors G (between cocomplete cate-
gories).

A particular instance of this quite general notion of tensor product is
considered in vol.1 of [Bor](p.128) where for F : C→ Set and G : Cop → Set
he defines F ⊗G as Fψ (in the sense of Definition 4.1) where ψ : 1 +- C
is the distributor corresponding to G via

G : Cop → Set
ψ : Cop × 1→ Set
ψ : 1 +- C

Equivalently, one may define F ⊗G as φψ : 1 +- 1 where φ : C +- 1 is
the distributor corresponding to F via

F : C→ Set
φ : 1op ×C→ Set
φ : C +- 1

which makes sense as φψ : 1op × 1→ Set is (essentially) a set.5

Notice that composition of distributors

Dist(B,C)×Dist(A,B)→ Dist(A,C) : (ψ, φ) 7→ ψφ

is cocontinuous. Therefore, for φ ∈ Dist(A,B) the cocontinuous functor

(−)φ : Dist(B,C)→ Dist(A,C)

between presheaf toposes by the adjoint functor theorem has a right adjoint

HomA(φ,−) : Dist(A,C)→ Dist(B,C)

giving rise to a natural 1–1–correspondence

ψφ⇒ θ
ψ ⇒ HomA(φ, θ)

5It seems to be appropriate to think of the composite ψφ as sort of a tensor product as
one factors by the least equivalence relation rendering the pairs (by, x) and (y, xb) equal
in analogy to the construction of tensor products for abelian groups or modules.
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and using Yoneda one easily checks that

HomA(φ, θ)(C,B) ∼= Nat(φ(B,−), θ(C,−)) .

Similarly, there is a right adjoint HomA(ψ,−) to ψ(−) giving rise to a natural
1–1–correspondence

ψφ⇒ θ

φ⇒ HomC(ψ, θ)

and using Yoneda one easily checks that

HomC(ψ, θ)(B,A) = Nat(ψ(−, B), θ(−, A)) .

We close this section by observing that for every small category A we
have that A↓Dist is enriched in Dist in the following way: for distributors
φ : A +- B, ψ : A +- C and θ : A +- D there is a composition map

HomA(ψ, θ)HomA(φ, ψ)⇒ HomA(φ, θ)
HomA(ψ, θ)HomA(φ, ψ)φ⇒ HomA(ψ, θ)ψ ⇒ θ

where the two natural transformations below the line are induced by the
counits HomA(φ, ψ)φ ⇒ ψ and HomA(ψ, θ)ψ ⇒ θ of the Tensor–Hom–
Adjunction.

5 Duality for Distributors and Right Adjoints

It is well known that by dualisation a natural transformation

ϕ : f → g : A→ B

between functors turns into a natural transformation

ϕop : gop → f op : Bop → Aop

i.e. (−)op reverts 1–cells and 2–cells. However, for relation the situation is
quite different. If R ⊆ S : A +- B then Ro ⊆ So : B +- A. A similar
phenomenon holds for Dist which is no surprise as it is a generalisation of
relations.
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Definition 5.1 Let φ : A +- B be a distributor then let φσ : Aop +- Bop

be the distributor given by

φ : A +- B
φ : Bop ×A −→ Set
A×Bop −→ Set

φσ : (Aop)op ×Bop −→ Set
φσ : Bop +- Aop

and for ϕ : φ ⇒ ψ : A +- B let ϕσ : φσ ⇒ ψσ : Bop +- Aop be given by
ϕσ

A,B = ϕB,A.

It is straightforward to check that

(φσ)σ = φ (ψφ)σ = φσψσ (idA)σ = idAop

as expected. For this reason cocontinuity of composition of distributors fol-
lows from cocontinuity in one argument. Moreover, left and right Hom as
discussed above are interrelated in the following way

ψ ⇒ HomA(φ, θ)
ψφ⇒ θ

(ψφ)σ ⇒ θσ

φσψσ ⇒ θσ

ψσ ⇒ HomAop

(φσ, θσ)

ψ ⇒ HomAop

(φσ, θσ)σ

from which it follows that one can define one from the other using the duality
(−)σ.

Next we use the duality (−)σ to construct right adjoint distributors to
functors between small categories considered as distributors.

Definition 5.2 For a functor f : A→ B between small categories there are
associated distributors

φf = B(−, f(−)) : A +- B

and
φf = (φfop)σ : B +- A

where φf is called “f considered as a distributor” and φf is called “its right
adjoint distributor.
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Notice that explitating the definition of φf gives φf (A,B) = B(f(A), B).
The following lemma justifies the terminology “φf is the right adjoint dis-
tributor of φf”.

Lemma 5.1 For a functor f : A→ B between small categories we have

φf a φf

i.e. φf is right adjoint to φf in the bicategory Dist.

Proof. The unit and counit of the adjunction are given by

η : idA ⇒ φfφf : a 7→ f(a)

and
ε : φfφ

f ⇒ idB : [(b′, b)]∼ 7→ b′b

respectively.
The validity of the required triangle equalities is easy to check. �

Actually, there is the following strengthening of Lemma 5.1.

Theorem 5.2 A distributor φ : A +- B has a right adjoint iff φ̂ : A→ B̂
factors through the Cauchy completion of B, i.e. the full subcategory of B̂ on
retracts of representable presheaves.

Proof. See Volume 1 of [Bor]. �

From this it follows that A and B are equivalent in the bicategory Dist
iff Â ' B̂. In general, such an equivalence is not induced by a functor.
However, it can be shown that A and B are equivalent in Dist iff their
Cauchy completions, i.e. splitting of idempotents, are equivalent as categories
(cf. [Bor]).

In the remainder of this section we demonstrate how duality may be
fruitfully applied to the study of categories of relations. In [FrSc] one can
find the definition of an allegory providing an axiomatic account of categories
of relations. Essentially an allegory A is a poset enriched category with an
involution (−)op where the hom–sets are meet semi–lattices, (−)op preserves
this structure and, moreover, the law of

14



(Modularity) SR ∩ T ≤ (S ∩ TR◦)R

holds.
In [FrSc] maps were characterised as those morphisms R such that

RRop ≤ 1 and 1 ≤ RopR

hold. The first requirement expresses single–valuedness and the second one
expresses totality of R. Though not stated in [FrSc] maps in an allegory can
be characterised as follows.

Theorem 5.3 A morphism R : A +- B in an allegory A is a map iff R
has a right adjoint S, i.e. S : B +- A with 1 ≤ SR and RS ≤ 1. Moreover,,
the right adjoint of R is Rop provided it exists.

Proof. If R is a map then obviously Rop is the right adjoint of R.
For the reverse direction suppose that R a S, i.e. 1 ≤ SR and RS ≤ 1.

Then by modularity we have

1 = 1 ∩ 1 ≤ SR ∩ 1 ≤ (S ∩Rop)R ≤ R◦R

and as 1 = 1op ≤ RopSop again by modularity we also have

1 ≤ RopSop ∩ 1 ≤ (Rop ∩ S)Sop ≤ SSop .

Thus, as RS ≤ 1 it follows that R ≤ RSSop ≤ Sop and S ≤ RopRS ≤ Rop,
i.e. Sop ≤ R, from which it follows that S = Rop and R is a map. �

In [FrSc](2.1) it has been shown that an allegoryA is equivalent to Rel(C)
for some regular category C iff A is unitary and tabular. 6 The central notion
of tabularity is defined in [FrSc] as follows: for every R : A +- B there
are maps p : P → A and g : P → B which tabulate R, i.e. R = qpop and
qopq∩popp = 1. In [FrSc] it has been shown that for maps p and q tabulating
R it holds that for all maps f : C → A and g : C → B with gfop ≤ R there
is a unique map h : C → P with f = ph and g = qh. Thus, in a unitary
tabular allegory A a pair of maps p : P → A and q : P → B tabulates

6Up to equivalence the C is given by Map(A), the category of maps in A.
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R : A +- B iff R = qpop and (p, q) is terminal in the category of spans
(f, g) with gfop ≤ R.

Thus, for categories of relations over a regular category the following
holds.

Theorem 5.4 For a regular category C for every relation R : A +- B
there exists maps p : P → A and q : P → B such that

(1) R = qpop and

(2) whenever R = gfop then there is a unique map h with f = ph and
g = qh.

6 Distributors at Work

In this section we consider a couple of examples demonstrating how notions
and facts of basic category theory can be reformulated and generalised using
the conceptual framework of distributors. For ease of exposition in the sequel
we will not distinguish notationally between φ : A +- B and φ̂ : A→ B̂.

6.1 Some simple examples

It is well known that for an adjunction F a U the functor F is full and
faithful iff the unit η is a natural isomorphism. This generalises to arbitrary
functors F : A→ B between small categories without assuming that F has
a right adjoint as from Lemma 5.1 we know that F is full and faithful iff the
unit η of the adjunction φF a φF is an isomorphism.

For a functor f : A → B between small categories the change of base
functor f ∗ : B̂ → Â has a left adjoint f! given by the left Kan extension of
YB ◦ f : A +- B̂ along Yoneda as

f! ◦ YA = YB ◦ f = φf a φf = f ∗ ◦ YB

Let I be a discrete category, i.e. a set, and F : I → A. The corresponding
family (Ai)i∈I in A is generating iff the family of functors Hom(Ai,−) : A→
Set is collectively faithful, i.e. iff φF : A→ SetIop

is faithful. Thus, we may
define a functor F : I→ A to be generating iff φF : A→ Î is faithful.
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Similarly, F : I → A is a strong family of generators (cf. Definition 4.5.13
of vol.1 of [Bor]) iff φF : A → SetIop

reflects isomorphisms. Thus, we may

define a functor F : I→ A to be strongly generating iff φF : A→ Î is faithful
and reflects isomorphisms.

A full subcategory I : D ↪→ A is called a dense family iff every object
in A arises as the (canonical) colimit of its approximating objects in D.
Proposition 4.5.13 of vol.1 of [Bor] says that D is a dense family iff for

φI : A → D̂ : A 7→ A(I(−), A) is full and faithful. Accordingly, we may

call a functor F : B → A dense iff φF : A → B̂ is full and faithful. Notice
that F is stronly generating whenever F is dense as φF reflects isomorphisms
whenever φF is full and faithful.

Moreover, from these considerations it follows easily that a category A is
well–powered if it has a dense family I : D ↪→ A as in this case φI : A→ D̂
is full and faithful and such functors reflect well–poweredness (D̂ is well–
powered as it is a presheaf topos).

6.2 Finality

A functor F : A → B is called final iff for every object B in B the comma
category B↓F is nonempty and connected. Obviously, a functor F is final
iff F! : Â → B̂ preserves terminal objects. Thus, final functors are closed
under composition as if F! and G! preserve terminal objects then so does
(GF )!

∼= G!F!. The identity functor IdA is always final but the Yoneda

functor YA : A → Â is not final if A is not connected (as then 1↓YA is
empty).

6.3 Flatness

On p.260 of [Bor] flatness is defined as follows.

(1) A functor F : A → Set is flat iff its category of elements Elts(F ) is
cofiltered.

(2) A functor F : A→ B is flat iff for all B ∈ B the functor B(B,F (−)) :
A→ Set is flat in the sense of (1).

First of all this definition is not well constructed as when instantiating
B by Set in (2) one gets a condition which at first sight is stronger than
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condition (1), i.e. it needs some argument to see that they are equivalent.
Thus, the right way of defining flatness of FA → B this way would be to
require that Elts(B(B,F (−)) is cofiltered for all objects B ∈ B. However,
such a definition of flatness is inappropriate as it does not capture the idea
of flatness. It rather should arise as an a posteriori characterisation of the
appropriately defined notion of flatness. That is what we will do next.

Recall that for a functor F : A → B the left adjoint F! : Â → B̂ to the
“reindexing” functor F ∗ : B̂ → Â is given by LA(YB ◦ F ), and, therefore,
isomorphic to φF (−) : Dist(1,A)→ Dist(1,B).

Usually, F is called flat iff F! : Â → B̂ preserves finite limits, i.e. iff
φF (−) : Dist(1,A) → Dist(1,B) preserves finite limits. However, we can
get rid of the somewhat unnatural restriction restriction to 1 by the following
lemma.

Lemma 6.1 For a distributor φ : A +- B the following properties are
equivalent

(1) φ(−) : Dist(1,A)→ Dist(1,B) preserves finite limits

(2) φ(−) : Dist(C,A)→ Dist(C,B) preserves finite limits for all C.

Proof. Clearly, (2) implies (1). The reverse direction holds as (finite) limits
in functor categories are pointwise. �

These considerations suggest the following definition of flatness of func-
tors.

Definition 6.1 A functor F : A→ B is flat iff

φF (−) : Dist(C,A)→ Dist(C,B)

preserves finite limits for all C.

One of the advantages of this reformulation of the notion of flatness is for
example the simple proof of the following lemma.

Lemma 6.2 Let F : A → B and G : B → C be functors where G is full
and faithful. Then F is flat whenever GF is flat.
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Proof. As G is full and faithful we have idB
∼= φGφG and accordingly

φF
∼= φGφGφF . As GF is flat by assumption φGφF (−) preserves finite limits.

As φG is right adjoint to φG we have that φG(−) preserves (finite) limits.
Thus, φGφGφF (−) preserves finite limits, too. As φF

∼= φGφGφF it follows
that φF (−) preserves finite limits, i.e. F is flat. �

Another advantage of our definition of flatness is that it easily generalises
to distributors.

Definition 6.2 A distributor φ : A → B is flat iff φ(−) : Dist(C,A) →
Dist(C,B) preserves finite limits for all C.

The analogy with the notion of flatness for modules is apparent when
thinking of composition of distributors as tensor product.

Notice that by Lemma 6.1 φ : A +- B is flat iff φ(−) : Dist(1,A) →
Dist(1,B) preserves finite limits, i.e. iff LA(φ) : Â → B̂ preserves finite
limits.

We now introduce the notions “filtered” and “cofiltered” which are most
useful for characterising flatness in more elementary terms.

Definition 6.3 A category C is filtered iff for every finite diagram in C
there is a cocone over it and a category C is called cofiltered if its dual Cop

is filtered, i.e. iff for every finite diagram in C there is a cone over it.7

In [Bor] for example one can find the following characterisation of covari-
ant presheaves whose Kan extension preserves finite limits.

Theorem 6.3 For a functor F : A → Set its left Kan extension LA(F ) :

Â→ Set preserves finite limits if and only if its category of elements Elts(F )
is cofiltered.

This gives rise to the following characterisation of flat functors.

Theorem 6.4 A functor F : A → B is flat iff B↓F is cofiltered for every
object B in B.

7Note that some people use the word “cofiltered” instead of “filtered” e.g. in MacLane
and Moerdijk’s book Sheaves in Geometry and Logic whereas in MacLane’s classical book
Categories for the Working Mathematician “filtered” is defined as in our present Defini-
tion 6.3. Although this traditional terminology has the disadvantage that a poset is a filter
iff its dual is filtered as a category we stick to it in our notes as it is the more common
one in the literature.
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Proof. As limits and colimits are pointwise and due to the construction
of left Kan extensions we have that LA(YB ◦ F ) : Â → B̂ preserves fi-
nite limits iff LA(B(B,F (−))) preserves finite limits for all B ∈ B. But
the latter condition by Theorem 6.3 is equivalent to the requirement that
Elts(B(B,F (−))) is cofiltered for all B ∈ B. As Elts(B(B,F (−))) ∼= B↓F
we get that F : A→ B is flat iff B↓F is cofiltered. �

One easily checks that B↓F is cofiltered iff for every finite diagram D :
D→ A and every cone β : ∆(B)⇒ FD there is a cone α : ∆(A)⇒ D such
that β factors through Fα, i.e. there is a map f : F (A)→ B with

B
f
- FA

FAI

FαI
?

β
I -

for all I ∈ D.

The characterisation of flatness given in Theorem 6.4 extends to distrib-
utors in the following way.

Theorem 6.5 A distributor φ : A +- B is flat iff B↓φ is cofiltered for all
B ∈ B where B↓φ stands for Elts(φ(B,−)).

Proof. First recall that φ is flat iff LA(φ) : Â +- B̂ preserves finite
limits. As limits and colimits are pointwise in presheaf categories and due
to the construction of left Kan extensions we have that LA(φ) preserves
finite limits iff all LA(φ(B,−)) preserve finite limits. By Theorem 6.3 this is
equivalent to B↓φ = Elts(φ(B,−)) being cofiltered for all B ∈ B. �

Notice that Theorem 6.4 follows from Theorem 6.5 since B↓F ∼= B↓φF .

As we shall see in the next subsection flatness of a distributor will turn
out as equivalent to flatness of certain functors associated with a distribution
in a canonical way.

We suggest to try the following

Exercise. Show that F : A → B is dense iff HomA(φF , φF ) ∼= idB (Hint:
Use that F is dense iff φF is full and faithful!).
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6.4 Distributors, Comma and Cocomma Categories

In this section we will show how a distributor φ : A +- B can be factorised
as φ ∼= φp0φ

p1 and φ ∼= φd0φd1 where

S(φ) A B

A
�

p 1

B

p
0

-

C(φ)
� d 0

d
1 -

are canonically chosen spans and cospans whose construction we describe
next.

The category C(φ) is constructed as follows. Its objects are given by the
disjoint union of the objects of A and B, i.e. Ob(C(φ)) = Ob(A) q Ob(B).
The morphism of C(φ) are the morphisms of A and B together with “formal
arrows” x : B → A for every x ∈ φ(B,A). Composition is inherited from
A and B, respectively, for pairs of arrows living in the same component.
For formal arrows x : B → A and a : A → A′, b : B′ → B in A and B,
respectively, we put

ax = φ(B, a)(x) and xb = φ(A, b)(x)

in accordance with notation introduced earlier. We write d0 : B ↪→ C(φ) and
d1 : A ↪→ C(φ) for the respective full embeddings. Then one easily verifies
that φ ∼= φd0φd1 which factorisation is called the cospan representation of
φ. This assignment of cospans to distributors extends to a functor C :
Dist(A,B)→ Cospan(A,B) by sending a natural transformation ϕ : φ⇒
ψ to the functor C(ϕ) : C(φ) → C(ψ) which maps a formal arrow x ∈
φ(B,A) to the formal arrow ϕB,A(x) ∈ ψ(B,A) and behaves like identity on
objects and all other arrows.

The corresponding span representation of φ is obtained by taking the
(non-commuting) comma square

S(φ)

A
�

p 1

B

p
0

-

C(φ)
� d 0

d
1 -
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where S(φ) = d0↓d1 and p0 and p1 are the source and target functor, re-
spectively, for which one easily shows that φ ∼= φp0φ

p1 . The category S(φ)
can be described more elementarily as follows. Its objects are given by the
disjoint union of the φ(B,A), i.e. Ob(S(φ)) =

∐
B,A φ(B,A). A morphism

from x ∈ φ(B,A) to x′ ∈ φ(B′, A′) is a pair (b, a) where a : A → A′ and
b : B → B′ such that x′b = ax. Composition of morphisms is componentwise
and inherited from A and B. Again this assignment of spans to distributors
extends to a functor S : Dist(A,B) → Span(A,B) by sending a natural
transformation ϕ : φ ⇒ ψ to the functor S(ϕ) : S(φ) → S(ψ) which maps
a formal arrow x ∈ φ(B,A) to the formal arrow ϕB,A(x) ∈ ψ(B,A) and
behaves like identity on objects and all other arrows.

These constructions satisfy the following important

Theorem 6.6 Let A and B be categories. Then the functors

C : Dist(A,B)→ Cospan(A,B) and S : Dist(A,B)→ Span(A,B)

are both full and faithful. Moreover, the functor C has a right adjoint sending
cospan (i, j) to φjφi and the functor S has a left adjoint sending span (p, q)
to φqφ

p.

Proof. Left as an exercise. �

As a consequence we get that Dist(A,B) is

(1) equivalent to the full reflective subcategory of Span(A,B) of those

spans A
p←− C

q−→ B where p is a cofibration, q is a fibration and
〈p, q〉 : C→ A×B has discrete fibres and

(2) equivalent to the full reflective subcategory of Cospan(A,B) of those

cospans A
i−→ C

j←− B where i is a cosieve inclusion, j is a sieve
inclusion and each object of C is either of the form i(A) or of the form
j(B).

Notice that for a cospan A
f−→ C

g←− B its comma span is given by
S(φgφf ) and, therefore, cospans give rise to the same comma span if and
only if they induce the same distributor.
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Accordingly, for a span A
f←− C

g−→ B its cocomma cospan is given by
C(φgφ

f ) and, therefore, spans give rise to the same cocomma cospan if and
only if they induce the same distributor.

We spend the rest of this subsection to the discussion of flatness criteria
for distributors arising from their canonical span and cospan representations.

Lemma 6.7 For a distributor φ : A +- B with canonical span and cospan
representations

S(φ)

A +
φ

-
�

p 1

B

p
0

-

C(φ)
� d 0

d
1 -

φ is flat iff d1 is flat iff p0 is flat.

Proof. Notice that B↓d1
∼= B↓φ for all B ∈ B and A↓d1

∼= A↓A is cofil-
tered for all A ∈ A. Thus, B↓φ is cofiltered for all B ∈ B iff C↓d1 is cofiltered
for all C ∈ C. Thus, by Theorems 6.4 and 6.5 it follows that φ is flat iff d1

is flat.
The functor p0 is a fibration whose fibre over B is B↓d1. But one knows

that a fibration is flat iff all its fibres are cofiltered. Thus, the functor p0 is
flat iff all its fibres B↓d1 are cofiltered. Thus, by Theorem 6.4 it follows that
p0 is flat iff d1 is flat. �

Though the previous lemma does not extend to arbitrary non-canonical
span and cospan representations one nevertheless has the following sufficient
criteria: a distributor φqφ

p is flat if q is flat (as the right adjoint φp is flat
anyway) and a distributor φ = φjφi is flat if the functor i is flat (as the right
adjoint φj is flat anyway).

6.5 Abstract Kan Extensions

Next we investigate Kan extensions within bicategories.
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Definition 6.4 Let B be a bicategory. A 1-cell f : A→ B in B is called a
left/right Kan map iff

B(f, C) : B(B,C)→ B(A,C)

has a left/right adjoint Lf for all objects C.

If B is the category Bim of bimodules or the category Dist of distributors
then B(f, C) always has a right adjoint as it is cocontinuous.8 However,
B(f, C) need not always have a left adjoint as composition does not preserve
limits in general as there are modules and distributors which are not flat!

Generally, in bicategories B a 1–cell f : A→ B is a left Kan map if f has
a right adjoint in B. In the special case of Dist, however, it turns out that
φ is a left Kan map iff φ has a right adjoint distributor, i.e. iff φ is essentially
a functor (cf. Theorem 5.2).

By the adjoint functor theorem a distributor φ is a left Kan map in Dist
iff (−)φ preserves all limits, i.e. iff φσ(−) preserves all limits. A distributor
φ is usually called absolutely flat iff φ(−) preserves all limits. Thus, φ is a
left Kan map in Dist iff φσ is absolutely flat.

7 Distributors and Generalised Fibrations

In this final section we describe how via distributors the notion of a fibred
category can be generalised considerably. This is only the beginning of a
long story which may be told at another place in more detail.

It was noticed by the author back in the early 70ies that with an arbitrary
functor P : X→ I one may associate a normalised9 lax functor

dP : Iop → Dist

where dP (I) is the fibre P (I) of P over I and for α : J → I in I the
distributor dP (α) : P (I) +- P (J) is given by

dP (α)(Y,X) = {f : Y → X | P (f) = α}

dP (α)(b, a)(f) = afb .

8Notice that in these bicategories B(C, f) : B(C,A)→ B(C,B) is always cocontinuous
and, therefore, has a right adjoint called right coextension along f .

9meaning here that identities are preserved by the lax functor
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Moreover, every functor F from P to Q : Y → I over I (i.e. QF = P ) gives
rise to a lax natural transformation dF : dP ⇒ dQ whose components are
the fibres FI of F .

On the other hand with every normalised lax functor D : Iop → Dist one
may associate via (a slightly adapted) Grothendieck construction a functor
P :

∫
D → I and these processes of “differentiation” and “integration” are

mutually inverse to each other.
There arises the question to which extent properties of a functor P :

X→ I can be expressed equivalently in terms of the normalised lax functor
dP : Iop → Dist. Actually this is possible for quite a few examples some of
which will be discussed in this section.

For example a functor P is a prefibration iff dP factors through Cat and
it is a fibration iff moreover dP is a pseudofunctor.

This suggest that for any subbicategory B of Dist we may consider those
functors P whose derivative dP factors through B. Obviously, such a class of
functors is stable under pullbacks along arbitrary functors as for any pullback

Y - X

J

Q
?

F
- I

P
?

in Cat it holds that
dQ ' dP ◦ F

and, therefore, dQ factors through B whenever P factors through B.
Just to mention a further interesting example we may take for B the

subbicategory of flat distributors.
Another example is the subbicategory B of Dist containing all categories

as objects and whose 1–cells are the partial functors which will be defined in
a moment and which contains all 2–cells between partial functors.

A partial functor from A to B is given by a span

C

A
�
co

sie
ve ⊃

B

F

-

whose left leg is the inclusion of a cosieve. As cosieve inclusions are closed
under composition and stable under pullbacks along arbitrary functors partial
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functors can be composed as follows

E - D
G

- C

C

cosieve
?

∩

F
- B

cosieve
?

∩

A

cosieve
?

∩

in accordance with the usual definition of composition for partial maps. No-
tice that partial functors are up to isomorphism in 1–1–correspondence with
those distributors φ : A → B̂ which factor through B̃, the full subcategory
of B̂ of representable presheaves and 0, the empty presheaf. More explicitely,
this 1–1–correspondence sends a partial functor (i : C ↪→ A , f : A → B)

to the distributor φfφ
i and a φ : A → B̃ to the span (i, f) as given by the

pullback

C
f

- B

A

i cosieve
?

∩

φ
- B̃

?

∩

where B ↪→ B̃ is the inclusion of representable presheaves.10 One readily
checks that this 1–1–correspondence respects composition of these (partic-
ular) spans and these (particular) distributors. Notice, however, that the

partial functor corresponding to a distributor φ : A→ B̃ ↪→ B̂ as described
by the pullback above is different already in trivial cases from the terminal
span representing the distributor φ . Consider e.g. the identity on A as given
by YA : A→ Ã ↪→ Â then the corresponding partial functor is given by the

10Notice that the inclusion 1↪→1̃ classifies cosieve inclusions in Cat. In this sense 1↪→1̃
resembles the subobject classifiers of toposes. On the other hand the inclusions B↪→B̃
resemble the partial map classifiers of toposes. This analogy explains why we have chosen
the notation B̃.

26



span (idA, idA) whereas the terminal span representing YA is given by

A2

A
�

∂ 0

A

∂
1

-

which coincide if and only if A is discrete.
The functors whose derivative factors through the subbicategory of partial

functors can be characterised as those functors where cartesian arrows are
closed under composition but cartesian liftings of X along some α exist if
and only if there exists some lifting of X along α. Alternatively, one may
characterise them as those functors P : X → I whose class V of vertical
arrows forms part of a foliation on X.

Another important class of generalised or weak fibrations are the so–
called homotopy fibrations P : X → I where the category of liftings of X
(in P (I)) along α : J → I in I is always nonempty and connected. They
can be characterised as those functors whose derivative factors through the
subbicategory of Dist consisting of those distributors φ : A → B̂ where
φ factors through the full subcategory of B̂ on those presheaves P whose
category of elements Elts(P ) is nonempty and connected. Dropping the
requirement of connectedness but keeping the requirement of nonemptyness
gives rise to the important class of Serre fibrations consisting of those functors
P : X → I where for every α : J → I and X over I there is a morphism
f : Y → X over α.

The functors P : X → I whose derivative dP : Iop → Dist is a pseudo–
functor and not just a lax normalized functor are called Conduché fibrations.
Thus P is a fibration if and only if P is a Conduché fibration and a pre-
fibration. Conduché fibrations have been characterised (independently by
J. Giraud and F. Conduché) as those functors F : A → B for which the
change of base functor F ∗ : Cat/B→ Cat/A has a right adjoint

∏
F . More

elementarily P : X→ I is a Conduché fibration iff for every f : Y → X in X
and β : J → K and α : K → I with α ◦ β = P (f) the category Splitα,β(f) is
connected and nonempty where the morphisms of Splitα,β(f) are commuting
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diagrams

Z

Y

h
-

X

g

-

Z ′

u

? g
′
-

h ′ -

with g ◦h = f = g′ ◦h′, P (g) = α = P (g′), P (h) = β = P (h′) and u vertical.

One easily may imagine that there is a lot of other interesting examples
in this vein which are worthwhile to be investigated.
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